• 제목/요약/키워드: ductility

검색결과 2,754건 처리시간 0.024초

Assessing the ductility of moment frames utilizing genetic algorithm and artificial neural networks

  • Mazloom, Moosa;Afkar, Hossein;Pourhaji, Pardis
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.445-461
    • /
    • 2018
  • The aim of this research is to evaluate the effects of the number of spans, height of spans, number of floors, height of floors, column to beam moment of inertia ratio, and plastic joints distance of beams from columns on the ductility of moment frames. For the facility in controlling the ductility of the frames, this paper offers a simple relation instead of complex equations of different codes. For this purpose, 500 analyzed and designed frames were randomly selected, and their ductility was calculated by the use of nonlinear static analysis. The results cleared that the column-to-beam moment of inertia ratio had the highest effect on ductility, and if this relation was more than 2.8, there would be no need for using the complex relations of codes for controlling the ductility of frames. Finally, the ductility of the most frames of this research could be estimated by using the combination of genetic algorithm and artificial neural networks properly.

다공성 소결 순 Al에서 인장연성 변화에 관한 연구 (A Study on the Variation of Tensile Ductility in Porous Sintered Pure Aluminum)

  • 정재영
    • 소성∙가공
    • /
    • 제27권2호
    • /
    • pp.93-99
    • /
    • 2018
  • An analytical solution for the tensile ductility in porous ductile materials was derived based on an Irwin's approach of the elastic-plastic deformation in fracture mechanics. This was in good agreement with the experimental results of a tensile ductility in a sintered pure Al, and could solve the discrepancies in the Brown and Embury, or the McClintock models. This model was also offered as an advanced analytical solution considering the effect of stress triaxiality of pore tip in addition to pore interactions, material properties of matrix, and local deformation effect around pore. The evaluation of an analytical solution in the sintered pure Al powder compacts showed that the tensile ductility depends not only on the volume fraction of pores, but also on the pore size and on the mechanical properties of the matrix. The tensile ductility of the sintered pure Al compacts decreased rapidly with the increasing of a pore volume fraction, despite of the excellent tensile ductility of the matrix. This significant decrease in the tensile ductility was mainly attributed to the low yield strength of the matrix and small pore size. Particularly, the effects of the large radius and high volume fraction of the pore on the tensile ductility in Al-Form, were thus reasonably predicted by this analytical equation.

프리캐스트 병렬 전단벽의 연성도 해석 (Ductility Demand of Precast Coupled Shear Wall)

  • 홍성걸;김영욱
    • 한국지진공학회논문집
    • /
    • 제3권2호
    • /
    • pp.29-40
    • /
    • 1999
  • 본 연구는 초기 내진설계단에서 프리캐스트 병렬전단벽의 연결보의 필요한 연성도의 간단한 계산방법을 제시한다 프리캐스트 병렬 전단벽의 최상층 변위는 연속체 접근 방법으로 구한 부부과 구한 부분과 분절적으로 나타나는 수평접합부의 개폐로 인한 소성변위의 합으로 나타난다. 이러한 계산을 통해 시스템 레벨의 연성도와 부재 레벨의 연성도의 관계를 구한다 여기서 제안되 연성도 관계식으로부터 연결보의 강성이 증가하거나 강도가 벽체에 비해 작은 경우에는 연결보의 과다한 연성도가 필요하 것으로 나타난다 또한 이러한 연성도는 해당 층의 수평접합부의 개폐정도에 비례함을 보여준다 그러나 고층부의 연결보는 수평접합부 개폐정도에 관계가 적음을 보여준다.

  • PDF

탄소성 단자유도 구조물에 대한 연성계수의 통계적 분석 (Statistical Study of Ductility Factors for Elastic Perfectly Plastic SDOF Systems)

  • 강철규;최병정
    • 한국지진공학회논문집
    • /
    • 제7권2호
    • /
    • pp.39-48
    • /
    • 2003
  • 반응수정계수의 핵심구성요소인 연성계수에 대하여 통계적 분석을 수행하였다. 연성계수의 체계적인 산정을 위하여 총 1,860개의 지진기록을 수집하였다. 수집된 지진기록을 지반 전단파의 평균속도에 따라 4가지로 분류하고, 탄소성 이력거동을 가지는 단자유도 구조물에 대하여 비탄성 스펙트럼을 작성하였다. 작성된 비탄성 스펙트럼으로부터 연성계수를 구하고, 변위연성비, 토질조건, 규모 및 진앙거리가 연성계수에 미지는 영향을 분석하였다. 토질 조건별로 평균연성계수를 구하고, 산정된 연성계수의 산포도를 검토하기 위하여 변동계수를 산정하였다.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.

철근콘크리트 교각의 연성요구량에 따른 심부구속철근량 (Confinement Steel based on Ductility Demand for RC Bridge Columns)

  • 손혁수;한상엽;조재원;이재훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.322-329
    • /
    • 2002
  • The purpose of this study is to develop a reasonable design for transverse confinement reinforcement considering ductility and required transverse confinement reinforcement of RC bridge columns. In order to develop relationships between the curvature ductility and the displacement ductility, the analysis for total 21,600 columns using the computer program NARCC have been carried out for parametric studies. Based on the results from the parametric studies, a correlation equation between the curvature ductility and the displacement ductility was developed. In addition, an equation for calculating the required transverse confinement reinforcement based on ductility demand was developed for seismic design of RC bridge columns. The equations proposed by this study will provide more reasonable and more effective design guidelines for performance-based seismic design of RC bridge columns.

  • PDF

New Seismic Design Concept for RC Bridge Columns

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.204-209
    • /
    • 2003
  • The purpose of this study is to develop new seismic design concept based on ductility demand for reinforced concrete bridge columns in areas of low to moderate seismicity. In developing the ductility based design approach, relationship between ductility demand and transverse reinforcement demand should be quantitatively developed. To evaluate ductility capacity of reinforced concrete columns, analytical models and a non-linear analysis program, NARCC have been developed. Based on analytical and experimental results, an equation for relationship between curvature ductility and displacement ductility, an equation for designing the transverse confinement reinforcement for ductility demand, and a new seismic design concept of RC bridge columns are presented.

  • PDF

Flexural ductility of RC beam sections at high strain rates

  • Pandey, Akhilesh K.
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.537-552
    • /
    • 2013
  • Computation of flexural ductility of reinforced concrete beam sections has been proposed by taking into account strain rate sensitive constitutive behavior of concrete and steel, confinement of core concrete and degradation of cover concrete during load reversal under earthquake loading. The estimate of flexural ductility of reinforced concrete rectangular sections has been made for a wide range of tension and compression steel ratios for confined and unconfined concrete at a strain rate varying from $3.3{\times}10^{-5}$ to 1.0/sec encountered during normal and earthquake loading. The parametric studies indicated that flexural ductility factor decreases at increasing strain rates. Percentage decrease is more for a richer mix concrete with the similar reinforcement. The confinement effect has marked influence on flexural ductility and increase in ductility is more than twice for confined concrete (0.6 percent volumetric ratio of transverse steel) compared to unconfined concrete. The provisions in various codes for achieving ductility in moment resisting frames have been discussed.

Curvature ductility prediction of high strength concrete beams

  • Bouzid, Haytham;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.195-201
    • /
    • 2018
  • From the structural safety point of view, ductility is an important parameter, a relatively high level of curvature ductility would provide to the structure an increased chance of survival against accidental impact and seismic attack. The ductility of reinforced concrete beams is very important, because it is the property that allows structures to dissipate energy in seismic zone. This paper presents a revision of an earlier formula for predicting the curvature ductility factor of unconfined HSC beams to make it simpler in the use. The new formula is compared with the earlier formula and other numerical and experimental results. The new formula regroups all parameters can affecting the curvature ductility of unconfined HSC beams and it has the same domain of application as the earlier formula.

Evaluation of local and global ductility relationships for seismic assessment of regular masonry-infilled reinforced concrete frames using a coefficient-based method

  • Su, R.K.L.;Tang, T.O.;Lee, C.L.
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.1-22
    • /
    • 2013
  • Soft storey failure mechanism is a common collapse mode for masonry-infilled (MI) reinforced concrete (RC) buildings subjected to severe earthquakes. Simple analytical equations correlating global with local ductility demands are derived from pushover (PO) analyses for seismic assessments of regular MI RC frames, considering the critical interstorey drift ratio, number of storeys and lateral loading configurations. The reliability of the equations is investigated using incremental dynamic analyses for MI RC frames of up to 7 storeys. Using the analytical ductility relationship and a coefficient-based method (CBM), the response spectral accelerations and period shift factors of low-rise MI RC frames are computed. The results are verified through published shake table test results. In general applications, the analytical ductility relationships thus derived can be used to bypass the onerous PO analysis while accurately predicting the local ductility demands for seismic assessment of regular MI RC frames.