• Title/Summary/Keyword: ductile material

Search Result 365, Processing Time 0.023 seconds

A Study on Forming of Al-Zn-Mg-Sc Aluminum Alloy Bolts (Al-Zn-Mg-Sc 알루미늄 합금 볼트 성형에 관한 연구)

  • Yoon, D.J.;Hahm, S.Y.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.447-452
    • /
    • 2012
  • This paper is concerned with forming of Al-Zn-Mg-Sc aluminum alloy bolts, focusing on the effects of heat treatment and age-hardening on the formability and ductile damage evolution. Both experimental and finite element studies were performed. From the experiments, it is observed that the heat treatment or the normalization of Al-Zn-Mg-Sc aluminum alloy increases its formability dramatically resulting in successful bolt forming, while the effects of age-hardening at room temperature on the stress-strain relationship and formability are not very critical. Deformation characteristics such as distribution of effective stress and strain, material flow, and ductile damage evolution during bolt forming are examined using a commercial finite element package, Deform-2D. It should be noted that the extrusion load predicted by the finite element method matches well the experiment results. The finite element predictions on the deformation characteristics support the experimental observations such as fracture of bolt head flange, material flow, and distribution of hardness.

Prediction of Edge-cracking Generation in Cold Rolling (냉간압연에서 Edge-cracking 발생 예측에 관한 연구)

  • Son, Y.K.;Lee, S.H.;Lee, J.B.;Lee, S.J.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.117-120
    • /
    • 2009
  • The rolling of flat slabs or sheet metal is probably the most advanced technique of metalworking technology. In spite of this very intensive activity, the problem if edge cracking has not been resolved. Although edge cracking is a major industrial problem, relatively little well-documented experimental work has been published on subject. Despite the paucity of exact experiments, it is reasonably certain from published data that three causes contribute to its occurrence; (1) limited ductility of the rolled material (2) uneven deformation at the edges and (3) variations in stresses along the width of the rolled material, particular near the edge. The present study was carried out to show the generation of edge cracking using ductile fracture criteria and FE-simulation. The validity of simulated results was verified by rolling experiments of steel strip.

  • PDF

TFD Device with Symmetrical Structure of Flexible Electrode Subject to Flexible Substrate

  • Lee, Chan-Jae;Hong, Sung-Jei;Kim, Won-Keun;Han, Jeong-In
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.32-35
    • /
    • 2002
  • In this work, we test electrode material of TFD (Thin Film Diode) device subject to flexible substrate. Al, that is ductile metal, was proper for flexible electrode to fabricate flexible display. The fabricated devices had symmetric electrode structure on both sides of insulation layer. The electrode was made of ductile Al so as to reduce the mismatch of properties between the electrode and substrate. The TFD device was successfully fabricated applying our own etch-free process. Electrical properties were improved by post-annealing.

Numerical Simulation on the Behavior of ECC-Strengthened Flexural Structures. (고인성 복합재료로 휨 보강된 구조물의 거동에 관한 수치해석적 연구)

  • Shin, Seung-Kyo;Lim, Yun-Mook;Kim, Jang-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.151-154
    • /
    • 2005
  • One of the most important characteristics of Engineered Cementitious Composite (ECC) is its strain hardening behavior up to $5\∼6\%$of stain under a tensile loading. So, the ductile behavior of ECC should be utilized in applications to maximize the performance of structures. Thus, in this study, the ductile behavior of ECC as a repair material applied to the tensile region under flexural loads is numerically examined using a developed numerical model. Several strain capacities of ECC are examined to predict the behavior of ECC strengthened flexural structures. The results show that a certain optimal level of ductility in ECCs for repair applications exists and it is an important factor to consider when using ECC as a repairing material.

  • PDF

Elasto-Plastic Analysis for J-integral Evaluation of Unstable Fracture in Cracked Ductile Materials (균열재(龜裂材)의 불안정연성파괴(不安定延性破壞)에 대한 J 적분(J積分) 평가(評價)를 위한 탄소성해석(彈塑性解析))

  • Chang, Dong Il;Jung, Kyoung Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.75-82
    • /
    • 1987
  • It is the objective of this study to estimate J-integral by numerical analysis, in which J-integral as aparameters in fracture mechanics can be used to evaluate unstable ductile fracture which is a important problem with respect to structural stability when the scope is beyond small scale yielding criteria. For this, 8-node isoparametric singular element as crack tip element of a cracked material was used to solve plastic blunting phenomenon at crack tip, and crack opening was forced to start when J-value was exceeding fracture toughness $J_{IC}$ of the material. And crack propagation behaviour was treated by using crack opening angle. From this study, it was shown that crack opening, stable propagation and unstable opening point of the cracked material found by using J-value obtained from this study were accord with the other study, so think, J-value obtained from this study can be directly used as a parameter in fracture mechanics to deal with the problem of stable propagation of crack and unstable ductile fracture.

  • PDF

Ingot-Breakdown Design of Tower Flange Material for Offshore Wind Turbine (해상풍력발전용 타워플랜지 소재의 잉고트 파쇄공정설계)

  • Yoo, G.Y.;Kang, N.H.;Kim, J.H.;Hong, J.K.;Lee, C.S.;Lee, J.M.;Kim, N.Y.;Yeom, J.T.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.412-419
    • /
    • 2012
  • The ingot-breakdown scheme of a tower flange material (low-alloy steel) for offshore wind turbine was investigated using finite element (FE) simulations and experimental analyses. Based on compression test results of the low-alloy steel, a deformation processing map was generated using the superposition approach between the dynamic materials model (DMM) and Ziegler's instability criterion. The deformation processing map allowed determination of the optimum process conditions for the tower flange material. Within the FE simulations of the ingot breakdown process, the Cockcroft-Latham criterion, which considers ductile fracture, was used to predict the possibility of forming defects during the hot working process. In general, the critical value for the ductile fracture of steel is 0.74. During the ingot-breakdown under optimum process conditions, the actual tower flange forgings exhibited a relatively uniform shape without any forming defects.

Influnce of machinability on the Tool life of ADI Materials in Drilling (ADI 재료의 드릴 가공시 절삭특성이 공구수명에 미치는 영향)

  • 조규재
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.46-56
    • /
    • 1996
  • Drilling tests were carried out austempered ductile castiron(ADI) to clarify the factors influencing the drilling characteristics of ADI material. The machinability of material was evaluated using high speed steel drill and cobalt contained drill of 6mm diameter. The spheroidal graphite cast iron materials were austenized at 90$0^{\circ}C$ for 1 hour and then wear was kept at 375$^{\circ}C$ for 2 hours. Austempered ductile cast iron contains a great deal of retaine austenite which contributes to an improvement of impact strength, In this paper, machinability of ADI was investigated by drilling experimentation. The results obtained are as follows: a)Flank wear increases logarithmically with the increases of cutting time. b) Relation of flank wear and cutting force can be appiled to $F_z$ = 925VB + 820 for the cutting suggested condition. c) Drilling hole number of about 2 times can be reduced more step feed than ordinary feed due to the high hardness of ADI material and hardness increasing ascribed to the martensite of retained austenite.

  • PDF

Study on Chevron Crack Occurring in a 4-stage Open Cold Extrusion Process by Finite Element Method (유한요소법을 이용한 4단 개방냉간압출시 발생하는 셰브론 크랙에 관한 연구)

  • Hwang, H.S.;Lee, Y.S.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.4
    • /
    • pp.210-215
    • /
    • 2017
  • In this paper, utilizing the theory of ductile fracture a chevron crack in a 4-stage open cold extrusion process is predicted by the finite element methods and then compared with previous experiments. The normalized Cockcroft-Latham damage model is employed and the material is identified using a tensile test based material identification technique that gives fracture information as well as flow stress at large strain. A large difference between the predicted cracks and actual experiments is observed, specifically narrower width and greater maximum height of the crack. This reveals the limitation of this approach based on the conventional theory of ductile fracture. Based on the observations and the related criticisms, a new approach for predicting the chevron crack is proposed, suggesting that either the critical damage should not be a fixed material constant, or that the conventional fracture theory should be considered with the effects of embrittlement due to accumulated plastic deformation while the duration of crack generation and plastic deformation should be reduced.

Influence of ECC ductility on the diagonal tension behavior (shear capacity) of shear-wall panel (ECC (Engineered Cementitious Composite)의 연성이 전단벽의 사인장 거동에 미치는 영향)

  • Ha Gee-Joo;Shin Jong-Hack;Kim Yun Yong;Kim Jeong-Su;Kim Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.321-324
    • /
    • 2005
  • This paper presents a preliminary study on the influence of material ductility on diagonal tension behavior of shear-wall panels. There have been a number of previous studies, which suggest that the use of high ductile material such as ECC (Engineered Cementitious Composite) significantly enhanced shear capacity of structural elements even without shear reinforcements involved. The present study emphasizes increased shear capacity of shear-wall panels by employing a unique strain-hardening ECC reinforced with poly(vinyl alcohol) (PVA) short random fibers. Normal concrete was adopted as the reference material. Experimental investigation was performed to assess the failure mode of shear-wall panels subjected to knife-edge loading. The results from experiments show that ECC panels exhibit a more ductile failure mode and higher shear capacity when compared to ordinary concrete panels. The superior ductility of ECC was clearly reflected by micro-crack development, suppressing the localized drastic fracture typically observed in concrete specimen. This enhanced structural performance indicates that the application of ECC for a in-filled frame panel can be effective in enhancing seismic resistance of an existing frame in service.

  • PDF