• Title/Summary/Keyword: ductile material

Search Result 365, Processing Time 0.028 seconds

Material Degradation in KS D 3503 SS400 Rolled Steel at $179^{\circ}C$ (KS D 3503 SS400 압연강 $179^{\circ}C$에서의 재질열화 연구)

  • Baek, Un-Bong;Park, Jong-Seo;Nahm, Seung-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.13-18
    • /
    • 2006
  • In spite of frequent defect in industrial boilers, life assessment or diagnostic method for them has not been actively studied. In this research, SS400 carbon steel used in industrial boilers is simulated with artificial aging heat treatment. To do qualitative life assessment, differences in micro-structures and hardness of SS400 by the degradation time are studied. In addition, variation in material properties by aging was observed with the tensile test at room temperature and $179^{\circ}C$ and changes in ductile to brittle transition temperature was observed with the charpy impact test performed at several test temperature.

Non-Local Analysis of Forming Limits of Ductile Material Considering Damage Growth (보이드 성장을 고려한 재료의 성형한계에 대한 비 국소 해석)

  • Kim, Young-Suk;Won, Sung-Yeun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.914-922
    • /
    • 2003
  • In this paper, the strain localization of voided ductile material has been analyzed by nonlocal plasticity formulation in which the yield strength not only depends on an equivalent plastic strain measure (hardening parameter), but also on the Laplacian thereof. The gradient terms in yield criterion show an important role on modeling strain-softening phenomena of material. The influence of the mesh size on the elastic -plastic deformation behavior and the effect of the characteristic length parameter for localization prediction are also investigated. The proposed nonlocal plasticity shows that the load -strain curves converge to one curve. Results using nonlocal plasticity also exhibit the dependence of mesh size is much less sensitivity than that for a corresponding local plasticity formulation.

Numerical prediction of bursting failure in bulge forming using a seamed tube (심용접 튜브를 사용한 벌지 성형에서의 터짐불량 예측)

  • Kim, J.;Kim, Y.W;B.S. Kang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.240-243
    • /
    • 2003
  • Finite element analyses for bursting failure prediction in bulge forming under combined internal pressure and independent axial feeding are carried out. By means of the FEM combined with Oyane's ductile fracture criterion based on Hills quadratic plastic potential, the forming limit and bursting pressure level are investigated for a seamed tube that comprises of weldment, heat affected zone(HAZ) and base material parts. Especially, in order to determine the material property of HAZ tensile tests for the base material and the weld metal are executed based on iso-strain approach. Finally, through a series of bulge forming simulations with consideration of the weldment and HAZ it is concluded that the proposed method would be able to predict the bursting pressure and fracture initiation site more realistically, so the approach can be extended to a wide range of practical bulge forming processes.

  • PDF

A Study on the Machinability Characteristics of ADI Materials for the Drilling Conditions (ADI재료의 드릴가공시 가공조건에 따른 절삭특성에 관한 연구)

  • Cho, Gyu-Jae;Jeon, Eon-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.36-44
    • /
    • 1996
  • Drilling tests were carried out austempered ductile cast iron(ADI) to clarify the factors influencing the drilling characteristics of ADI material. The machinability of material was evaluated using high speed steel drill and cobalt contained drill of 6mm diameter. The spheroidal graphite cast iron materials were austemized at 900 .deg. C for 1 hour and then wear was kept at 375 .deg. C for 2 hours. Austempered ductile cast iron contains a great deal of retained austenite which contribustes to an improvement of impact strength. In this paper, machinability of ADI was invastigated by drilling experimentation. The results obtained are as follows:a) Flank wear incresses logarithmically with the increases of cutting time and proportionally with the increases of cutting force. b) Drilling hole number of about 2 times can be educed more step feed than ordinary feed due to the high hardness of ADI material and hardness increasing ascribed to the martensite of retained austenite.

  • PDF

Analysis of the Failure Stress in Pyrotechnically Releasable Mechanical Linking Device

  • Lee, Yeung-Jo;Kim, Dong-Jin;Kang, Won-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.813-822
    • /
    • 2008
  • The present work has been developed the interpretation processor including analysis of the failure stress in pyrotechnically releasable mechanical linking device, which has the release characteristic without fragmentation and pyro-shock, using SoildWorks, COSMOS Works and ANSYS programs. The aim of the invention is to propose a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. The pyrotechnically releasable mechanical linking device according to the invention is simple, compact and inexpensive in structure. It is simple to implement and permit the use of only a reduced quantity of pyrotechnic composition, such composition possibly being devoid of any primary explosive at all. The present work is only focused on the design of structure and the material characteristics. To analyze the fracture morphology resulted from tensile test in the different ball type bolts, the present work has been performed to estimate the failure stress of material and to make the same result from tensile test. The failure stress of SUS 630 in ductile material is approximately 1050 Mpa. The failure stress of SUS 420 in brittle material is about 1790 Mpa. Among the models used the ductile material, the model 6 is suitable a design of structure compared to that of other models. The use of this interpretation processor developed the present work could be extensively helped to estimate the failure stress of material having a complex geometry such as the ball type bolt

  • PDF

Parameter calibrations and application of micromechanical fracture models of structural steels

  • Liao, Fangfang;Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.153-174
    • /
    • 2012
  • Micromechanical facture models can be used to predict ductile fracture in steel structures. In order to calibrate the parameters in the micromechanical models for the largely used Q345 steel in China, uniaxial tensile tests, smooth notched tensile tests, cyclic notched bar tests, scanning electron microscope tests and finite element analyses were conducted in this paper. The test specimens were made from base metal, deposit metal and heat affected zone of Q345 steel to investigate crack initiation in welded steel connections. The calibrated parameters for the three different locations of Q345 steel were compared with that of the other seven varieties of structural steels. It indicates that the toughness index parameters in the stress modified critical strain (SMCS) model and the void growth model (VGM) are connected with ductility of the material but have no correlation with the yield strength, ultimate strength or the ratio of ultimate strength to yield strength. While the damage degraded parameters in the degraded significant plastic strain (DSPS) model and the cyclic void growth model (CVGM) and the characteristic length parameter are irrelevant with any properties of the material. The results of this paper can be applied to predict ductile fracture in welded steel connections.

An Experimental Study of Ultra-Precision Turning of Optical Glass(BK7) (광학유리(BK7) 초정밀절삭의 실험적 연구)

  • Kim, Min-Jae;Lee, June-Key;Yun, Yeong-Gon;Lee, Hyeon-Sung;Hwang, Yeon;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.382-385
    • /
    • 2011
  • There is an immense need to obtain nanometric surface finish on optical glass owing to the advantage of improved performance of the components. But owing to brittleness and hardness, optical glass is one of the materials that is difficult to ultra-precision turning. According to the hypothesis of ductile mode machining, regardless of their hardness and brittleness, will undergo a transition from brittle to ductile machining region below a critical undeformed chip thickness. Below this threshold, it is suggested that the energy required for plastic formation. Thus, plastic deformation is the predominant mechanism of material removal in machining these materials in this mode. An experimental study is conducted diamond cutting for machining BK7 glass. The investigation presents the feasibility of achieving nanometric surface and the understanding the mechanism of cutting glass, proving the cutting edge radius effect.

Finite Element Analysis of the Hydro-mechanical Punching Process (정수압을 이용한 홀 펀칭공정의 유한요소 해석)

  • Yoon J.H.;Kim S.S.;Kim E.J.;Park H.J.;Choi T.H.;Lee H.J.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.15 no.3 s.84
    • /
    • pp.220-225
    • /
    • 2006
  • This paper investigates the characteristics of a hydro-mechanical punching process. The hydro-mechanical punching process is divided into two stages: the first stage is the mechanical half piercing in which an upper punch goes down before the initial crack is occurred; the second stage is the hydro punching in which a lower punch goes up until the final fracture is occurred. Ductile fracture criteria such as the Cockcroft, Brozzo and Oyane are adopted to predict the fracture of sheet material. The index values of ductile fracture criteria are calculated with a user material subroutine, VUMAT in the ABAQUS Explicit. The hydrostatic pressure retards the initiation of a crack in the upper region of the blank and induces another crack in the lower region of the blank during the punching process. The final fracture zone is placed at the middle surface of the blank to the thickness direction. The result demonstrates that the hydro-mechanical punching process makes a finer shearing surface than the conventional one as hydrostatic pressure increases.

Evaluation of Fracture Strength and Material Degradation for Weldment of High Temperature Service Steel Using Advanced Small Punch Test

  • Lee, Dong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1604-1613
    • /
    • 2004
  • This paper presents an effective and reliable evaluation method for fracture strength and material degradation of the micro-structure of high temperature service steel weldment using advanced small punch (ASP) test developed from conventional small punch (CSP) test. For the purpose of the ASP test, a lower die with a minimized ${\Phi}$1.5 mm diameter loading ball and an optimized deformation guide hole of ${\Phi}$3 mm diameter were designed. The behaviors of fracture energy (E$\_$sp/), ductile-brittle transition temperature (DBTT) and material degradation from the ASP test showed a definite dependency on the micro-structure of weldment. Results obtained from ASP test were compared and reviewed with results from CSP test, Charpy impact test, and hardness test. The utility and reliability of the proposed ASP test were verified by investigating fracture strength, behavior of DBTT, and fracture location of each micro-structure of steel weldment for test specimen in ASP test. It was observed that the fracture toughness in the micro-structure of FL+CGHAZ and ICHAZ decreased remarkably with increasing aging time. From studies of all micro-structures, it was observed that FGHAZ microstructure has the most excellent fracture toughness, and it showed absence of material degradation.

Development and Control Technology of Austempered Ductile Irons with High Strength and High Toughness for Automotive Cam Shaft. (고강도 ADI의 자동차용 캠사프트 개발)

  • Kim, Jae-Yun;Kang, Dong-Myoung;Ahn, Sang-Uk;Kim, Kwang-Bae;Kang, In-Chan
    • Journal of Korea Foundry Society
    • /
    • v.11 no.3
    • /
    • pp.217-227
    • /
    • 1991
  • The present study was conducted to estimate the fatigue crack growth rate of the Mo-Ni alloyed ductile cast iron for the influence of austempering temperature and time. The fatigue crack growth rate was affected by retained austenite. Retained austenite volume were higher with the ductile cast irons which were austempered at $360^{\circ}C$ than austempered at $260^{\circ}C$, and the fatigue crack growth rate of the former was lower than that of the latter. Also, the fatigue growth rate of the former was the lowest at austempering for 1 hour and that of the latter was the lowest at austempering for 3 hours.

  • PDF