• 제목/요약/키워드: ductile failure

검색결과 382건 처리시간 0.022초

FASTENER HOLE 모델의 대한 예비압입 적용 연구 (A Study on the Application of Pre-Indentation Technique for Fastener Hole Model)

  • 황정선;조환기
    • 한국항공우주학회지
    • /
    • 제31권9호
    • /
    • pp.26-31
    • /
    • 2003
  • 노후 항공기는 일반적으로 다중손상(MSD)이라고 하는 폭넓게 분포된 피로손상을 내포하고 있다. 2024-T3 알루미늄합금과 같은 연성재료에 있어서 다중손상은 전통적인 파괴역학에서 예측할 수 있는 것보다 낮은 운용수명을 예측하게 만드는 것으로 알려져 있다. 본 논문에서는 다중손상을 갖는 평판 구조물을 모델링한 Fastener Hole을 갖는 2024-T3 알루미늄합금 판재로 제작된 Hole/Slot type M(T) 시편에 예입압입을 적용한 후 피로시험을 수행하여 피로균열 성장지연에 의한 운용수명 증가에 대한 효과를 연구하였다. 예비압입을 적용한 시편은 파단에 이르는 사이클수가 최소 10배에서 최대 40배까지 증가하였으며, 일정진폭 하중의 최대값을 증가시킴에 따라서 그 효과가 감소함을 보여주었다. 또한, 압입에 의한 균열성장지연 메커니즘은 균열진전경로가 압입자국에 들어서면서 균열성장률이 감소하기 시작하며 압입자국의 중심을 지나면서 최소균열성장률 상태로 일정한 시간동안 균열성장이 정체됨으로써 피로수명이 연장됨을 밝혔다.

Mid-length lateral deflection of cyclically-loaded braces

  • Sheehan, Therese;Chan, Tak-Ming;Lam, Dennis
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1569-1582
    • /
    • 2015
  • This study explores the lateral deflections of diagonal braces in concentrically-braced earthquake-resisting frames. The performance of this widely-used system is often compromised by the flexural buckling of slender braces in compression. In addition to reducing the compressive resistance, buckling may also cause these members to undergo sizeable lateral deflections which could damage surrounding structural components. Different approaches have been used in the past to predict the mid-length lateral deflections of cyclically loaded steel braces based on their theoretical deformed geometry or by using experimental data. Expressions have been proposed relating the mid-length lateral deflection to the axial displacement ductility of the member. Recent experiments were conducted on hollow and concrete-filled circular hollow section (CHS) braces of different lengths under cyclic loading. Very slender, concrete-filled tubular braces exhibited a highly ductile response, undergoing large axial displacements prior to failure. The presence of concrete infill did not influence the magnitude of lateral deflection in relation to the axial displacement, but did increase the number of cycles endured and the maximum axial displacement achieved. The corresponding lateral deflections exceeded the deflections observed in the majority of the previous experiments that were considered. Consequently, predictive expressions from previous research did not accurately predict the mid-height lateral deflections of these CHS members. Mid-length lateral deflections were found to be influenced by the member non-dimensional slenderness (${\bar{\lambda}}$) and hence a new expression was proposed for the lateral deflection in terms of member slenderness and axial displacement ductility.

Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups

  • Qissab, Musab Aied;Salman, Mohammed Munqith
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.347-358
    • /
    • 2018
  • The main aim of this research was to investigate the shear strength of non-prismatic steel fiber reinforced concrete beams under monotonic loading considering different parameters. Experimental program included tests on fifteen non-prismatic reinforced concrete beams divided into three groups. For the first and the second groups, different parameters were taken into consideration which are: steel fibers content, shear span to minimum depth ratio ($a/d_{min}$) and tapering angle (${\alpha}$). The third group was designed mainly to optimize the geometry of the non-prismatic concrete beams with the same concrete volume while the steel fiber ratio and the shear span were left constant in this group. The presence of steel fibers in concrete led to an increase in the load-carrying capacity in a range of 10.25%-103%. Also, the energy absorption capacity was increased due to the addition of steel fibers in a range of 18.17%-993.18% and the failure mode was changed from brittle to ductile. Tapering angle had a clear effect on the shear strength of test specimens. The increase in tapering angle from ($7^{\circ}$) to ($12^{\circ}$) caused an increase in the ultimate shear capacity for the test specimens. The maximum increase in ultimate load was 45.49%. The addition of steel fibers had a significant impact on the post-cracking behavior of the test specimens. Empirical equation for shear strength prediction at cracking limit state was proposed. The predicted cracking shear strength was in good agreement with the experimental findings.

내부 구속 중공 RC 교각의 매개변수 연구 (A Parameter Study of Internally Confined Hollow Reinforced Concrete Piers)

  • 최준호;윤기용;한택희;강영종
    • 한국방재학회 논문집
    • /
    • 제10권4호
    • /
    • pp.17-24
    • /
    • 2010
  • 중공 RC 교각은 중실 RC 교각에 비해 자중의 감소 및 재료 절감에 대한 장점을 가진다. 그러나 중공 RC 교각은 안쪽면의 취성파괴로 인하여 낮은 연성 거동을 할 가능성이 있다. 이러한 문제점을 해결하기 위해 중공 부재 내의 콘크리트 3축 구속 상태로 존재하게 하는 내부 구속 중공 RC 교각이 개발되었다. 본 연구에서는 내부 구속 중공 RC 교각의 매개변수(중공비, 내부강관두께, 횡방향 철근 간격, 종방향 철근 개수, 콘크리트 강도)변화에 따른 안전율, 연성도, 재료비 및 교각 총 중량에 대한 거동 특성을 파악하였다. 매개변수 변화에 따른 내부 구속 RC 교각의 거동 특성 결과 내부 강관 두께는 최소한의 내부강관 두께를 적용하는 것이 효과 적인 것으로 파악되었다.

탄소섬유시트로 보강된 철근콘크리트 보의 휨 거동 (Flexural Behaviors of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets)

  • 김성도
    • 한국전산구조공학회논문집
    • /
    • 제23권2호
    • /
    • pp.227-234
    • /
    • 2010
  • 탄소섬유시트로 보강된 철근콘크리트 보의 휨 거동을 조사하기 위해 하나의 기준보와 8개의 보강보(4개의 NU-보강보, 4개의 U-보강보)에 대한 휨 실험을 수행하였다. NU-보강보는 단부에 U 밴드를 적용하지 않은 보를, U-보강보는 U 밴드를 가진 보를 의미한다. 보강보 실험에서의 실험변수들은 탄소섬유시트의 보강겹수, U 밴드의 적용유무등이 있다. U 밴드를 가진 보강 시스템은 섬유시트의 계면박리 파괴를 지연시키고, U 밴드가 없는 보강시스템보다 나은 연성거동을 나타내 보였다. NU 보강보와 U 보강보 모두에서 섬유시트 겹수의 증가에 따라 최대하중과 휨 강성은 증가하였다. 실험결과들을 이론적인 비선형 휨 해석결과와 비교하였으며, 하중-처짐 선도 및 항복이전단계와 항복이후단계에서의 항복하중, 최대하중, 휨 강성 등이 잘 일치함을 확인하였다.

강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가 (Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns)

  • 권혁진;양근혁;홍승현
    • 콘크리트학회논문집
    • /
    • 제29권3호
    • /
    • pp.291-298
    • /
    • 2017
  • 이 연구에서는 강재 기둥과 접합된 하이브리드 H-보-철근 콘크리트 보(HSRC)의 반복 휨 거동을 평가하였다. 실험 변수는 HSRC 보의 연결절점에 배근되는 장부철근의 유무이다. HSRC 보의 소성힌지는 RC 보보다는 기둥 접합부 부근의 H-보에서 형성되도록 유도하였다. 모든 실험체는 하중의 급격한 감소 없이 연성적인 거동을 보였으며, 비록 예상치 못한 H-기둥과 H-보 용접 접합부의 파괴가 발생하였지만, 결과적으로 4.6 이상의 변위연성비를 나타내었다. HSRC 보 시스템에서 RC 보의 균열진전, 휨 강도 및 연성에 대한 장부철근의 영향은 매우 미미하였다. HSRC 보 시스템의 휨 강도는 단면의 완전소성으로 가정하여 산정한 H-보의 최대 휨 내력에 비해 안전 측에서 평가될 수 있었다.

Shear behavior and shear capacity prediction of precast concrete-encased steel beams

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Liu, Yaping
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.261-272
    • /
    • 2020
  • A novel precast concrete-encased steel composite beam, which can be abbreviated as PCES beam, is introduced in this paper. In order to investigate the shear behavior of this PCES beam, a test of eight full-scale PCES beam specimens was carried out, in which the specimens were subjected to positive bending moment or negative bending moment, respectively. The factors which affected the shear behavior, such as the shear span-to-depth aspect ratio and the existence of concrete flange, were taken into account. During the test, the load-deflection curves of the test specimens were recorded, while the crack propagation patterns together with the failure patterns were observed as well. From the test results, it could be concluded that the tested PCES beams could all exhibit ductile shear behavior, and the innovative shear connectors between the precast concrete and cast-in-place concrete, namely the precast concrete transverse diaphragms, were verified to be effective. Then, based on the shear deformation compatibility, a theoretical model for predicting the shear capacity of the proposed PCES beams was put forward and verified to be valid with the good agreement of the shear capacities calculated using the proposed method and those from the experiments. Finally, in order to facilitate the preliminary design in practical applications, a simplified calculation method for predicting the shear capacity of the proposed PCES beams was also put forward and validated using available test results.

대형 상수관로 노후상태 조사 및 평가에 관한 연구 (Investigation and Assessment of the Deterioration on Aging Large Water Mains)

  • 김주환;배철호;김정현;홍성호;이경재
    • 상하수도학회지
    • /
    • 제20권4호
    • /
    • pp.545-558
    • /
    • 2006
  • The current conditions of large water mains are evaluated by deteriorations and the causes of deterioration are investigated through visual assessments in the field, mechanical tests and analysis of chemical compositions in laboratory for each pipe material, unlined cast iron pipes (CIPs), ductile iron pipes (DCIPs) and steel pipes (SPs) Tubercles and scales from internal and external corrosion of unlined cast iron pipes were identified as the causes of functional performance limitations in large water mains. It is investigated that main causes of internal and external corrosion of water pipes are from lots of depositions of organic and inorganic substances on pipe surface, concentrated pitting, and uniform corrosion by local or global exfoliation or detachment of lining and coatings of DCIPs and SPs. Internal and external corrosion depths of CIPs were higher than those of DCIPs and SPs. Consequently, total corrosion rate summed internal and external corrosion rates of CIPs also were shown to be higher than those of DCIPs and SPs. The failure time from hole generation of CIPs by total corrosion rate was predicted to be taken sixteen years, and DCIPs and SPs were twenty-six years and one hundred and fifty three years. And longitudinal deflection of investigated water mains were not happened and mechanical strengths such as tensile strength, elongation, and hardness also were mostly suited to Korea Standards. It was thought that the weakness of tensile strength of one sample(S-11) was, however, due to higher carbon contents(%) in CIPs. Pipe deterioration score of S-46 was 55.2 and was preferentially assessed to be rehabilitated.

The rock fragmentation mechanism and plastic energy dissipation analysis of rock indentation

  • Zhu, Xiaohua;Liu, Weiji
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.195-204
    • /
    • 2018
  • Based on theories of rock mechanics, rock fragmentation, mechanics of elasto-plasticity, and energy dissipation etc., a method is presented for evaluating the rock fragmentation efficiency by using plastic energy dissipation ratio as an index. Using the presented method, the fragmentation efficiency of rocks with different strengths (corresponding to soft, intermediately hard and hard ones) under indentation is analyzed and compared. The theoretical and numerical simulation analyses are then combined with experimental results to systematically reveal the fragmentation mechanism of rocks under indentation of indenter. The results indicate that the fragmentation efficiency of rocks is higher when the plastic energy dissipation ratio is lower, and hence the drilling efficiency is higher. For the rocks with higher hardness and brittleness, the plastic energy dissipation ratio of the rocks at crush is lower. For rocks with lower hardness and brittleness (such as sandstone), most of the work done by the indenter to the rocks is transferred to the elastic and plastic energy of the rocks. However, most of such work is transferred to the elastic energy when the hardness and the brittleness of the rocks are higher. The plastic deformation is small and little energy is dissipated for brittle crush, and the elastic energy is mainly transferred to the kinetic energy of the rock fragment. The plastic energy ratio is proved to produce more accurate assessment on the fragmentation efficiency of rocks, and the presented method can provide a theoretical basis for the optimization of drill bit and selection of well drilling as well as for the selection of the rock fragmentation ways.

입계부식법을 이용한 열화도 평가 프로그램 개발 (Program Development for Material Degradation Evaluation Using Grain Boundary Etching Method)

  • 유효선;백승세;나성훈;김정기;이해무
    • 대한기계학회논문집A
    • /
    • 제25권7호
    • /
    • pp.1064-1072
    • /
    • 2001
  • It is very important to evaluate material degradation like temper and carbide embrittlements to secure the reliable and efficient operational conditions and to prevent brittle failure in service. The extent of material deterioration can be accurately evaluated by mechanical test such as impact test or creep test. But it is almost impossible to sample a large specimen from in-service plants. Thus, the material degradation evaluation by a non-destructive method is earnestly required. Recently the non-destructive test technique which uses the grain boundary etching characteristics owing to the variation of material structures has been proposed. However the program for material degradation evaluation using the grain boundary etching method(GEM) in Windows 98 domain doesnt be developed now. The aims of this paper are to develop the program and to complete the new master curve equations for the evaluation of material degradation on in-serviced high temperature components.