• 제목/요약/키워드: ductile brittle transition temperature (DBTT)

검색결과 39건 처리시간 0.018초

IRRADIATION EMBRITTLEMENT OF CLADDING AND HAZ OF RPV STEEL

  • Lee J.S.;Kim I.S.;Jang C.H.;Kimura A.
    • Nuclear Engineering and Technology
    • /
    • 제38권5호
    • /
    • pp.405-410
    • /
    • 2006
  • Microstructural features and their related mechanical property changes in the 309L cladding and the heat affected zone (HAZ) of SA508 cl.3 steel were investigated through the use of TEM, tensile and small punch (SP) tests. The specimens were irradiated at 563 K up to the neutron fluences of $5.79{\times}10^{19}n/cm^2$ (>1MeV). The microstructure of the clad was mainly composed of a fcc ${\gamma}-phase$, a low percentage of bcc ${\delta}-ferrite$, and a brittle ${\sigma}-phase$. Along the weld fusion line there formed a heavy carbide precipitation with a width of $20{\sim}40{\mu}m$, showing preferential cracking during plastic deformation. The yield stress and ductile-to-brittle transition temperature (DBTT) of the irradiated clads increased. The origin of the hardening and the shift of the DBTT are discussed in terms of the irradiation-produced defect clusters of a fine size and brittle ${\sigma}-phase$.

열화된 1Cr-1Mo-0.25V강의 DBTT 크기효과 보정에 관한 연구 (Normalization of DBTT Size Effect far Aged 1Cr-lMo-0.25V Steel)

  • 남승훈;김엄기;이대열
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2109-2115
    • /
    • 2001
  • Miniaturized specimen technology is useful to characterize the mechanical behavior when it is difficult to sample the material enough for the test. In this study, two kinds of miniaturized Charpy impact specimens(i.e., miniaturized specimen with side groove and without side groove) of aged 1Cr- lMo-0.25V steel were prepared and tested. The relationship between the extent of degradation in terms of ductile brittle transition temperature(DBTT) and the fracture stress of 1Cr-1Mo-0.25V steel was established. The fracture stress obtained from miniaturized specimen without side groove turned out to be linearly related with the DBTT of standard specimen. Therefore the fracture toughness of aged turbine rotor steel might be evaluated by the fracture stress. In addition, the correlation between DBTT of standard specimen and that of miniaturized specimen was investigated. As the results of normalizing DBTT by maximum elastic tensile stress, the normalized DBTT of miniaturized specimen without side groove allows one to estimate that of standard specimen.

소형 샤르피 충격시험편에서의 파괴응력에 관한 연구 (A Study on the Fracture Stress in Miniaturized Charpy Impact Specimens)

  • 남승훈;김엄기;이대열;김시천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.132-137
    • /
    • 2001
  • Miniaturized specimen technology is useful to characterize the mechanical behavior using a minimum volume of material, because it is almost impossible to sample the conventional specimen for the fracture toughness test without damage to equipment. Test material was 1Cr-1Mo-0.25V steel which was widely used for turbine rotor material. Two kinds of miniaturized impact specimens were prepared, i.e., miniaturized specimen with side groove and without side groove. The correlation between ductile brittle transition temperature(DBTT) of full size impact specimen and that of miniaturized impact specimen was made. The characteristics of miniaturized impact specimens technique as well as fracture stress were discussed. Finally, we concluded that the characteristics of fracture stress change on aging time were similar to that of DBTT.

  • PDF

소형 펀치시험에 의한 강용접부의 파괴강도 평가에 관한 연구 2

  • 류대영;송기홍;정세희
    • Journal of Welding and Joining
    • /
    • 제7권4호
    • /
    • pp.56-67
    • /
    • 1989
  • In this study, the possibility of evaluating the peculiar fracture strength of weldment in high strength steels was investigated by means of a small punch(SP) test. In order to obtain the ductile-brittle transition temperature(DBTT) of SP energy by which the fracture strength of weldment in structural steels such as SS41 and SM53B steels had been evaluated in our preceding publication, the effects of notches and loading rates on SP energy were discussed. It was found that the correspondence of SP energy to critical COD at test temperature -196.deg. C showed a linear relation with some deviation. The empirical correlation with scatter band, Esp/(Esp)p = 1.67[.delta./(.delta./sub c//(.delta./sub c/)/sub p/]-0.55, was developed between the SP energy ratio and critical COD ratio of each weld structure compared with parent material at test temperature -196.deg. C. In addition, there did not appear to be a significant effect of test materials and specimen size etc. on the correlation.

  • PDF

전기화학적 방법에 의한 내열강의 열화도측정 제2보 : 열화도측정치에 미치는 측정조건들의 영향과 기계적성질 변화에 대해서 (Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique Part 2 : Effect of Testing Conditions on Evaluation Value of Degradation Degree and Changes of Mechaical Properties)

  • 정희돈;권영각;장래웅
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.300-312
    • /
    • 1993
  • The material deterioration of service-exposed boiler tube steels in fossil power plant was evaluated by using the electrochemical technique namely, modified electrochemical potentiokinetic reactivation(EPR). It was focused that the passivation of Mo$_{6}$C carbide which governs the mechanical properties of Mo alloyed steels did not occur even in the passivity region of steel in sodium molybdate solution and the reactivation peak current (Ip) observed as the result of non-passivation indicating the precipitation of Mo$_{6}$C carbides. To obtain the optimal test conditions for the field test by using the specially designed electrochemical cell, the effects of scan rate, the surface roughness and the pH of electrolyte on Ip value were also investigated. Furthermore, the change of mechanical properties occurred during the long time exposure at high temperature was evlauated quantitatively by small punch(SP) tests and micro hardness test taking account of the metallurgical changes. It is known that reactivation peak current (Ip) has a good relationship with Larson-Miller Parameter(LMP) which represents the information about material deterioration occurred at high temperature environment. In addition it was possible to estimate the ductile-brittle transition temperature (DBTT) by means of the SP test. The Sp test could be, therefore, suggested as a reliable test method for evaluating the material degradation of boiler tube steels. From the good correaltion between the SP DBTT and Ip values shown in this study, it was knows that the change of mechanical properties could be evaluated non-destructively by measurring only Ip values.ues.

미소역학 시험기법에 의한 9Cr1MoVNb강의 열화도 평가 (A Study on Material Degradation Evaluation of 9Cr1MoVNb Steel by Micromechanics Test Method)

  • 백승세;나성훈;유현철;이송인;안행근;유효선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.105-110
    • /
    • 2000
  • The Micromechanics test is new test method which uses comparatively smaller specimen than that required in conventional material tests. There are several methods, such as small-specimen creep test, the continuous indentation test, and small punch(SP) test. Among them, the small punch(SP) test method has been applied to many evaluation fields, such as a ductile-brittle transition temperature, stress corrosion cracking, hydrogen embrittlement, and fracture properties of advanced materials like FGM or MMC. In this study, the small punch(SP) test is performed to evaluate the mechanical properties at high/low temperature from $-196^{\circ}C$ to $650^{\circ}C$ and the material degradation for virgin and aged materials of 9Cr1MoVNb steel which has been recently developed. The ${\Delta}P/{\Delta}{\delta}$ parameter defined a slope in plastic membrane stretching region of SP load-displacement curve decreases according to the increase of specimen temperature, and that of aged materials is higher than the virgin material in all test temperatures. And the material degradation degrees of aged materials with $630^{\circ}C$ -500hrs and $630^{\circ}C$ -1000hrs are $36^{\circ}C$ and $38^{\circ}C$ respectively. These behaviors are good consistent with the results of hardness($H_v$) and maximum displacement(${\delta}_{max}$).

  • PDF

Evaluation of Mechanical Properties of RPV Clad by Small Punch Tests

  • Lee, Joo-Suk;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.574-585
    • /
    • 2002
  • The microstructural characteristics and its related mechanical properties of RPV cladding have been investigated using small punch (SP) tests. SA508 Cl.3 RPV steel plates were overlay cladded with the type ER309L welding consumables by submerged arc welding process. Although the RPV clad material had a small portion of 5 ferrite phase, it still showed the ductile to brittle transition behavior The transition temperature was determined by the SP test and it depended on the content of $\sigma$ phase, specimen size, and determination methods. The fracture appearance of SP specimen was changed from circumferential to radial cracking as test temperature became low, and below the transition temperature region, ER309L cladding usually fractured along the 6 ferrite by the low temperature failure of ferrite phase.

소형 펀치 시험에 의한 강용접부의 파괴강도 평가에 관한 연구 1

  • 유대영;정세희;임재규
    • Journal of Welding and Joining
    • /
    • 제7권3호
    • /
    • pp.28-35
    • /
    • 1989
  • It was reported that the toughness for welded region was influenced by various factors such as the gradient for prior austenite grain size, the variation of microhardness and the characteristic microstructure depending on distance from the fusion boundary. Therefore, in order to evaluate the fracture strength of the weldment in which the microstructures change continuously, it is important to assess the peculiar strength of each microstructure in welded region. It was known that the small punch(SP) test technique which was originally developed to study the irradiation damage effect for the structures of nuclear power plant was also useful to investigate the strength evaluating of nonhomogeneous materials. In this paper, by means of a small punch test technique the possibility of evaluating strength of parent and welded region in SS41 and SM53B steels was investigated. The obtained results are summerized as follows: 1) The small punch test which showed markedly the ductile-brittle transition behavior in this experiment may be applied to evaluation for the fracture strength of welded region. 2) It was shown that the ductile-brittle regime lied in Region III(plastic membrane stretching region) of the flow characteristics observed in SP test. 3) The SP test technique which shows a more precipitous energy change transition behavior than the other test technique is able to estimate the more precise transition temperature. 4) It could be seen that in comparision with the structure of parent the structure of weld HAZ in SS41 steel was improved while it in SM53B steel was deteriorated.

  • PDF

용접부 미세조직의 재질열화 평가를 위한 Advanced Small Punch 시험에 관한 연구 (A Study on Advanced Small Punch Test for Evaluation of Material Degradation in Weldment Microstructures)

  • 이동환;이송인;박종진;유효선
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.99-106
    • /
    • 2003
  • This research was aimed to evaluate the material degradation with various microstructures of X20CrMoV121 steel weldment by Advanced Small Punch(ASP) test. Due to the regional limitation on constitutive structures, the minimized loading ball(${\varphi}1.5mm$) and bore diameter of lower die(${\varphi}3mm$) were designed for the ASP test. The micro-hardness test was also performed to assess the mechanical properties with artificial aging heat treatment. Material degradation was estimated by ductile-brittle transition temperature(DBTT). The results obtained from the ASP test were compared with those from conventional small punch(CSP) test and CVN impact test for several weldment microstructures. It was found that the ASP test clearly showed the microstructural dependance on the material degradation in the weldment.

전기화학적 양극분극시험에 의한 고온 설비부재의 열화손상 평가 (Degradation Damage Evaluation of High Temperature Structural Components by Electrochemical Anodic Polarization Test)

  • 유호선;송문상;송기욱;류대영
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1398-1407
    • /
    • 2000
  • The structural steels of power plant show the decrease of mechanical properties due to degradation such as temper embrittlement, creep damage and softening during long-term operation at high temper ature. The typical causes of material degradation damage are the creation and coarsening of carbides(M23C6, M6C) and the segregation of impurities(P, Sb and Sn) to grain boundary. It is also well known that material degradation induces the cleavage fracture and increases the ductile-brittle transition temperature of steels. So, it is very important to evaluate degradation damage to secure the reliable and efficient service condition and to prevent brittle failure in service. However, it would not be appropriate to sample a large test piece from in-service components. Therefore, it is necessary to develop a couple of new approaches to the non-destructive estimation technique which may be applicable to assessing the material degradation of the components with not to influence their essential strength. The purpose of this study is to propose and establish a new electrochemical technique for non-destructive evaluation of material degradation damage for Cr-Mo steels which is widely used in the high temperature structural components. And the electrochemical anodic polarization test results are compared with those of semi-nondestructive SP test.