• Title/Summary/Keyword: ductile behavior flexural strength

Search Result 97, Processing Time 0.024 seconds

Analytical Study on Flexural Behavior of Alkali-Activated Slag-Based Ultra-High-Ductile Composite (알칼리활성 슬래그 기반 초고연성 복합재료의 휨거동 해석)

  • Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.158-165
    • /
    • 2019
  • The purpose of this study is to investigate analytically the flexural behavior of beam reinforced by an alkali-activated slag-based fiber-reinforced composite. The materials and mixture proportion were selected to manufacture an alkali-activated slag-based fiber-reinforced composite with high tensile strain capacity over 7% and compressive strength and tension tests were performed. The composite showed a compressive strength of 32.7MPa, a tensile strength of 8.43MPa, and a tensile strain capacity of 7.52%. In order to analyze the flexural behavior of beams reinforced by ultra-high-ductile composite, nonlinear sectional analysis was peformed for four types of beams. Analysis showed that the flexural strength of beam reinforced partially by ultra-high-ductile composite increased by 8.0%, and the flexural strength of beam reinforced fully by ultra-high-ductile composite increased by 24.7%. It was found that the main reason of low improvement in flexural strength is the low tensile strain at the bottom of beam. The tensile strain at bottom corresponding to the flexural strength was 1.38% which was 18.4% of tensile strain capacity of the composite.

Flexural Design and Ductile Capacity of Reinforced High Strength Concrete Beams (고강도 철근 콘크리트 보의 휨 설계 및 연성능력)

  • 신성우;유석형;안종문;이광수
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.141-149
    • /
    • 1996
  • The reinforced high-strength-concrete beam subjected to flexure moment behaves more brittly than the moderate-strength-concrete beam reinforced with equal reinforcement ratio($\rho$/$\rho_b$). Test results show that when the concrete strength exceeds 830kg/$cm^2$, the maximum reinforcement ratio should be less than $0.6{\rho}_b$ for ductile behavior (${\rho}_b$=balanced steel ratio). The ratio of flexural strength between experimental results and analytical results with rectangular stress block decrease as the compressive strength of concrete increase. The shape of the compressive stress block distributed triangularly. because the ascending part of the stress-strain curve shows fairly linear response up to maximum stress in contrast to the nonlinear behavior of the medium and low strength specimens.

A Study on Flexural Behavior of R.C. Columns with the configuration of Lateral Ties (띠철근 기근 형태에 따른 철근콘크리트 기둥의 휨 거동 에 관한 연구)

  • 조세용;양근혁;이영호;정헌수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.53-60
    • /
    • 2000
  • The objective of this study is to investigate the flexural behavior of reinforced concrete columns confined by lateral ties. This test was carried on the twelve reinforced concrete columns subjected to lateral and constant axial loads. The main experimental variables are concrete strength, the configuration of lateral ties, and the amount of lateral ties. Test results indicated that the steel configuration in column sections plays an important role in column behavior, and a proper configuration of lateral ties can obtain more ductile by the reduction of the space of lateral ties. Also, this experiment show that the utlization of high-strength concrete in columns properly designed on ACI Code takes less ductile. Therefore, we can conclude that the design of high-strength concrete columns under high axial loads requires more lateral ties than ACI Code.

A Study on the Flexural Behavior of RC Slabs with Externally Bonded Aramid Fiber Sheets (AFRT로 보강된 철근콘크리트 슬래브의 휨거동에 관한 연구)

  • 박홍용;최익창;홍규창;박재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.573-578
    • /
    • 1999
  • The reinforced concrete slabs with epoxy-bonded AFRT sheets were experimentally investigated. Experimental data on strength, stiffness, steel strain, deflection and mode of failure of strengthened slabs were obtained, and comparisons between the different flexural reinforcing schemes and reinforced concrete slabs without AFRT sheets were made. The result generally indicate that the flexural strength, ductile behavior of strengthened slabs increased.

  • PDF

Static and Fatigue Flexural Tests of Ductile High-performance Fiber Reinforced Cementitious Composites (고인성 섬유보강 콘크리트의 정적 및 피로 휨시험)

  • Shin, Kyung-Joon;Lee, Do-Keun;Lee, Kyoung-Chan;Kim, Sung-Il
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.602-608
    • /
    • 2021
  • Recently, research and development has been conducted to impart high performance and functionality to concrete materials by mixing various reinforcing materials into the matrix. Ductile fiber reinforced concrete using a large amount of fibers shows a distributed multiple cracking behavior, and various studies are being conducted on this material. However, research is focused on static behavioral analysis but studies on cyclic behaviors are not sufficient. In this study, beams were made of ductile fiber reinforced concrete with various fiber contents, and static and fatigue flexural tests were performed. As a result, the effect of fiber content on the flexural behavior was analyzed. Also, the applied load level and fatigue life relationship of ductile fiber reinforced concrete was proposed. Concrete with high ductile property could be achieved with a fiber content of 2%. When 0.5% fiber was more added, the maximum flexural strength was similar, but the flexural toughness is nearly doubled. On the other hand, there was no significant difference in the fatigue life of these two mixtures.

A Experimental Study on the Flexural Characteristics (GFRP로 보강된 RC보의 휨특성에 관한 실험적 연구)

  • 심종성;김규선;이석무;김경민
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.559-565
    • /
    • 1998
  • Flexural tests on 2.4m long reinforced concrete beams with epoxy-bonded GFRP plates are reported in these tests. The selected experimental variables are strengthening plate length, plate thickness, plate width and the method of anchoring the plate ends. The effects of these variables in overall behavior are discussed. The results generally indicate that the flexural strength of strengthened beams is increased. The ductile behavior of tested beams in inversely proportional to the plate thickness, plate width. The use of an U-jacket plate provided a proper anchorage system and improved the ductility of beams.

  • PDF

Flexural Behavior of Ultra High Performance Fiber Reinforced Concrete Segmental Box Girder (초고강도 섬유보강 콘크리트 분절형 박스 거더의 휨거동)

  • Guo, Qingyong;Han, Sang-Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.109-116
    • /
    • 2014
  • The flexural behavior test of UHPC segmental box girder which has 160 MPa compressive strength and 15.4 m length was carried out. The effect of steel fibers in combination with reinforcing bars on improving the ductile performance of UHPC box girder was evaluated by comparing the flexural behavior of the UHPC segmental box girders made by the two kinds of mixing portion. The test variables are volume fraction of steel fibers and the arrangement of reinforcing bars. The behavior of UHPC box girder BF2 composed of 1% volume fraction of steel fibers and longitudinal reinforcing bars in web and upper flange with stirrup showed the similar ductile behavior with the girder BF1 composed of 2% volume fraction without stirrup in elastic stress region. But BF1 had the better stiffness and showed the more ductile behavior in inelastic stress region. Segmental interfaces of UHPC box girder have not any crack and slide until the final flexural collapse load.

Assessment of Flexural Ductility in RC Beams with High-Strength Reinforcement (고장력 철근을 사용한 RC 보의 휨연성 평가)

  • 권순범;윤영수;이만섭;임철현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.897-902
    • /
    • 2001
  • Recently, structure performance is maximized by using high strength concrete. In design of structure, concrete need combination with reinforcement, but use of common strength reinforcement make member complex bar placement, so high strength concrete members require increased strength reinforcement. If common strength reinforcement replaced by equal tension area of high strength reinforcement, reinforcement ratio increase and brittle failure of member may occur by material change. So, adequate upper limit of strength ratio is required to affirm ductile behavior in application of high strength reinforcement. In this study, ductility behavior was analysed by factor of reinforcement ratio, strength of concrete and reinforcement. The result indicate that ductile failure is shown under 0.35 $\rho_{b}$ in any reinforcement strength of same section and high strength concrete of 800kg/$cm^{2}$ used commonly is compatible with reinforcement of 5500kg/$cm^{2}$.

  • PDF

Flexural Behavior of Strengthened RC Beams Using FRP Sheets (FRP시트를 이용한 보강 철근콘크리트보의 휨 거동)

  • 박대효;부준성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.75-80
    • /
    • 2001
  • This paper investigates the flexural behavior of reinforced concrete beams strengthened with externally bonded fiber reinforced plastic (FRP) sheets is investigated in this work. FRP is attractive for strengthening the RC beams due to its good tensile strength, low weight, resistance to corrosion, and easy applicability. A simple and direct analytical procedure for evaluating the ultimate flexural capacity of FRP strengthened reinforced concrete (SRC) beams is presented using the equilibrium equations and compatibility of strains. Upper and lower limits of FRP sheet area to ensure the ductile behavior are established. A parametric study is conducted to investigate the effects of design variables such as sheet area, sheet stiffness and strength, concrete compression strength, and steel reinforcement ratio. The analytical procedure is compared with results of experimental data available in the literature.

  • PDF

Effect of Anchorage Type of CFS on Flexural Behavior of RC Beams (탄소섬유쉬트의 정착 보강방법이 RC보의 휨거동에 미치는 영향)

  • Shin, Sung Woo;Bahn, Byong Youl;Lee, Kwang Soo;Cho, In Chol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.202-208
    • /
    • 1998
  • To investigae the effect of anchorage type of carbon fiber sheet (CFS) on flexural behavior of RC beams, the loading test of RC beams reinforced with CFS was conducted in variable of anchorage Type such as bolting anchorage and U type anchorage using CFS. This study can be summarized as follows ; It is confirmed experimentally that the bolting anchorage and U type anchorage with CFS is very effective to delay the bond failure and prevent the peeling of CFS. Also, the anchorage type applied with this study is very effective to improve the ductility compared with the improving of maximum flexural strength of RC beams. It is believed that the anchorage type used this study must secure the ductile capacity of above 3 for the flexural strengthening of RC beams. In the future, it is required to obtain the data about anchorage type of CFS for utilization of field work as well as investigate the ductile capacity of conventional study of anchorage type

  • PDF