• Title/Summary/Keyword: duck feet gelatin

Search Result 3, Processing Time 0.019 seconds

Effect of Duck Feet Gelatin Concentration on Physicochemical, Textural, and Sensory Properties of Duck Meat Jellies

  • Kim, Hyun-Wook;Park, Jae-Hyun;Yeo, Eui-Joo;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;Jeong, Tae-Jun;Choi, Yun-Sang;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.387-394
    • /
    • 2014
  • This study was conducted to determine the effect of duck feet gelatin concentration on the physicochemical, textural and sensory properties of duck meat jellies. Duck feet gelatin was prepared with acidic swelling and hot water extraction. In this study, four duck meat jellies were formulated with 3, 4, 5, and 6% duck feet gelatin, respectively. In the preliminary experiment, the increase in duck feet gelatin ranged from 5 to 20%, resulting in a significant (p<0.001) increase in the color score, but a decline in the hardness and dispersibility satisfaction scores. An increase in the added amount of duck feet gelatin contributed to decreased lightness and increased protein content in duck meat jellies. Regarding the textural properties, increase in the added amount of duck feet gelatin highly correlated with the hardness in the center (p<0.01, $R^2=0.91$), and edge (p<0.01, $R^2=0.89$), of duck meat jellies. Meanwhile, the increase in duck feet gelatin decreased the score for textural satisfaction; duck meat jellies containing 6% duck feet gelatin had a significantly lower textural satisfaction score, than those containing 3% duck feet gelatin (p<0.05). Furthermore, a significant difference in the overall acceptance of duck meat jellies formulated with 5% duck feet gelatin was observed, as compared to those prepared with 3% duck feet gelatin. Therefore, this study suggested that duck feet gelatin is a useful ingredient for manufacturing cold-cut meat products. In consideration of the sensory acceptance, the optimal level of duck feet gelatin in duck meat jellies was determined to be 5%.

Effects of Various Extraction Methods on Quality Characteristics of Duck Feet Gelatin

  • Park, Jae-Hyun;Choe, Ju-Hui;Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Yeo, Eui-Joo;Kim, Hack-Youn;Choi, Yun-Sang;Lee, Sang-Hoon;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.162-169
    • /
    • 2013
  • We determined the optimum pretreatment conditions such as pH and time for swelling duck feet and investigated the effects of the extracting method, such as water bath (WB), pressure cooker (PC), and microwave oven (MO), on quality characteristics of the duck feet gelatin for improving utilization of duck feet as a novel source of gelatin. The soaking solution of pH 1 among pH 1-14 with unit intervals was selected due to the highest yield. The quality characteristics of the gelatin tested were color, pH, gel strength, viscosity, and melting point. For the extracted gelatin with different methods, the CIE $L^*$, $a^*$ and $b^*$ values were in the following order: MO>PC>WB (p<0.05), WB>PC>MO (p<0.05) and PC>MO>WB (p<0.05), respectively. The gelatin extracted using WB showed the highest pH and that extracted using MO showed the lowest pH (p<0.05). The gel strength, viscosity, and melting point were the highest for MO (p<0.05). The gel strength and melting point were the lowest for PC (p<0.05). No significant difference was found in viscosity between the gelatins extracted using WB and PC (p>0.05). The quality characteristic of duck feet gelatin was affected by extracting methods, and MO extraction can be one of the effective methods for duck feet gelatin.

Effect of Duck Feet Gelatin on Physicochemical, Textural, and Sensory Properties of Low-fat Frankfurters

  • Yeo, Eui-Joo;Kim, Hyun-Wook;Hwang, Ko-Eun;Song, Dong-Heon;Kim, Yong-Jae;Ham, Youn-Kyung;He, Fu-Yi;Park, Jae-Hyun;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.34 no.4
    • /
    • pp.415-422
    • /
    • 2014
  • Duck feet gelatin (DFG) gel was added as a fat replacer to low-fat frankfurters and the effect of DFG on physicochemical, textural, and sensory characteristics of low-fat frankfurters was evaluated. DFG gel was prepared with a 20% duck feet gelatin concentration (w/w). Adding DFG decreased lightness and increased yellowness of the low-fat frankfurters (p<0.05). However, DFG did not affect redness of low-fat frankfurters (p>0.05). The statistical results indicated that adding DFG improved cooking yield of low-fat frankfurters (p<0.05). In addition, replacing pork back fat with DFG resulted in increased moisture content, protein content, and ash content of low-fat frankfurters, and the low-fat frankfurter formulated with 5% pork back fat and 15% DFG gel had the highest moisture content and lowest fat content (p<0.05). Adding of DFG increased all textural parameters including hardness, springiness, cohesiveness, chewiness, and gumminess of low-fat frankfurters (p<0.05). In terms of sensory properties, the low-fat frankfurter formulated with 5% pork back fat and 15% DFG gel showed similar satisfaction scores for the flavor, tenderness, juiciness, and overall acceptance when compared to the regular frankfurters (20% back fat). Therefore, our results suggest that DFG could be an effective novel source, as a fat replacer, for manufacturing of low-fat frankfurters.