• 제목/요약/키워드: dual-phase-lag model

검색결과 20건 처리시간 0.023초

Disturbance due to internal heat source in thermoelastic solid using dual phase lag model

  • Ailawalia, Praveen;Singla, Amit
    • Structural Engineering and Mechanics
    • /
    • 제56권3호
    • /
    • pp.341-354
    • /
    • 2015
  • The dual-phase lag heat transfer model is employed to study the problem of isotropic generalized thermoelastic medium with internal heat source. The normal mode analysis is used to obtain the exact expressions for displacement components, force stress and temperature distribution. The variations of the considered variables through the horizontal distance are illustrated graphically. The results are discussed and depicted graphically.

Dual-phase-lag model on microstretch thermoelastic medium with diffusion under the influence of gravity and laser pulse

  • Othman, Mohamed I.A.;Abd-Elaziz, Elsayed M.;Mohamed, Ibrahim E.A.
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.133-144
    • /
    • 2020
  • This investigation is to study the effect of gravitational field and diffusion on a microstretch thermoelastic medium heating by a non-Gaussian laser beam. The problem was studied in the context of the dual-phase-lag model. The normal mode analysis is used to solve the problem to obtain the exact expressions for the non-dimensional displacement components, the micro-rotation, the stresses, and the temperature distribution. The effect of time parameter, heat flux parameter and gravity response of three theories of thermoelasticity i.e. dual-phase-lag model (DPL), Lord and Shulman theory (L-S) and coupled theory (CT) on these quantities have been depicted graphically for a particular model.

Dual-phase-lag model on thermo-microstretch elastic solid Under the effect of initial stress and temperature-dependent

  • Othman, Mohamed I.A.;Zidan, Magda E.M.;Mohamed, Ibrahim E.A.
    • Steel and Composite Structures
    • /
    • 제38권4호
    • /
    • pp.355-363
    • /
    • 2021
  • The present paper attempts to investigate the propagation of plane waves in an isotropic elastic medium under the effect of initial stress and temperature-dependent properties. The modulus of elasticity is taken as a linear function of the reference temperature. The formulation is applied under the thermoelasticity theory with dual-phase-lag; the normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress, and the strain components. Numerical results for the field quantities are given in the physical domain and illustrated graphically. Comparisons are made with the results predicted by different theories (Lord-Shulman theory, the classical coupled theory of thermoelasticity and the dual-phase-lag model) in the absence and presence of the initial stress as well as the case where the modulus of elasticity is independent of temperature.

Fiber-reinforced micropolar thermoelastic rotating Solid with voids and two-temperature in the context of memory-dependent derivative

  • Alharbi, Amnah M.;Said, Samia M.;Abd-Elaziz, Elsayed M.;Othman, Mohamed I.A.
    • Geomechanics and Engineering
    • /
    • 제28권4호
    • /
    • pp.347-358
    • /
    • 2022
  • The main concern of this article is to discuss the problem of a two-temperature fiber-reinforced micropolar thermoelastic medium with voids under the effect rotation, mechanical force in the context four different theories with memory-dependent derivative (MDD) and variable thermal conductivity. The three-phase-lag model (3PHL), dual-phase-lag model (DPL), Green-Naghdi theory (G-N II, G-N III), coupled theory, and the Lord-Shulman theory (L-S) are employed to solve the present problem. Analytical expressions of the physical quantities are obtained by using Laplace-Fourier transforms technique. Numerical results are shown graphically and the results obtained are analyzed. The most significant points are highlighted.

Propagation of plane wave in transversely isotropic magneto-thermoelastic material with multi-dual-phase lag and two temperature

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • 제9권5호
    • /
    • pp.411-432
    • /
    • 2020
  • This research is devoted to the study of plane wave propagation in homogeneous transversely isotropic (HTI) magneto-thermoelastic rotating medium with combined effect of Hall current and two temperature due to multi-dual-phase lag heat transfer. It is analysed that, for 2-D assumed model, three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal) are present. The wave characteristics like phase velocity, specific loss, attenuation coefficients, energy ratios, penetration depths and amplitude ratios of transmitted and reflected waves are computed numerically and illustrated graphically and compared for different theories of thermoelasticity. Some particular cases are also derived from this research.

Influence of gravity, locality, and rotation on thermoelastic half-space via dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.375-381
    • /
    • 2024
  • In this paper, Eringen's nonlocal thermoelasticity is constructed to study wave propagation in a rotating two-temperature thermoelastic half-space. The problem is applied in the context of the dual-phase-lag (Dual) model, coupled theory (CD), and Lord-Shulman (L-S) theory. Using suitable non-dimensional fields, the harmonic wave analysis is used to solve the problem. Comparisons are carried with the numerical values predicted in the absence and presence of the gravity field, a nonlocal parameter as well as rotation. The present study is valuable for the analysis of nonlocal thermoelastic problems under the influence of the gravity field, mechanical force, and rotation.

Effects of Phase Difference between Voltage loaves Applied to Primary and Secondary Electrodes in Dual Radio Frequency Plasma Chamber

  • Kim, Heon-Chang
    • 반도체디스플레이기술학회지
    • /
    • 제4권2호
    • /
    • pp.11-14
    • /
    • 2005
  • In plasma processing reactors, it is common practice to control plasma density and ion bombardment energy by manipulating excitation voltage and frequency. In this paper, a dually excited capacitively coupled rf plasma reactor is self-consistently simulated with a three moment model. Effects of phase differences between primary and secondary voltage waves, simultaneously modulated at various combinations of commensurate frequencies, on plasma properties are investigated. The simulation results show that plasma potential and density as well as primary self-dc bias are nearly unaffected by the phase lag between the primary and the secondary voltage waves. The results also show that, with the secondary frequency substantially lower than the primary frequency, secondary self·do bias remains constant regardless of the phase lag. As the secondary frequency approaches to the primary frequency, however, the secondary self-dc bias becomes greatly altered by the phase lag, and so does the ion bombardment energy at the secondary electrode. These results demonstrate that ion bombardment energy can be more carefully controlled through plasma simulation.

  • PDF

A novel of rotating nonlocal thermoelastic half-space with temperature-dependent properties and inclined load using the dual model

  • Samia M. Said
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.459-466
    • /
    • 2024
  • Eringen's nonlocal thermoelasticity theory is used to study wave propagations in a rotating two-temperature thermoelastic half-space with temperature-dependent properties. Using suitable non-dimensional variables, the harmonic wave analysis is used to convert the partial differential equations to ordinary differential equations solving the problem. The modulus of elasticity is given as a linear function of the reference temperature. MATLAB software is used for numerical calculations. Comparisons are carried out with the results in the context of the dual-phase lag model for different values of rotation, a nonlocal parameter, an inclined load, and an empirical material constant. The distributions of physical fields showed that the nonlocal parameter, rotation, and inclined load have great effects. When a nonlocal thermoelastic media is swapped out for a thermoelastic one, this approach still holds true.

A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field

  • Said, Samia M.
    • Geomechanics and Engineering
    • /
    • 제31권2호
    • /
    • pp.159-166
    • /
    • 2022
  • The model of two-dimensional plane waves is analyzed in a micropolar-thermoelastic solid with microtemperatures in the context of the three-phase-lag model, dual-phase-lag model, and the Green-Naghdi theory of type III. Harmonic wave analysis is used to hold the solution to the problem. Numerical results of the physical fields are visualized to show the effects of the gravity field, magnetic field, and viscosity. The expression for the field variables is obtained generally and represented graphically for a particular medium.

Orthotropic magneto-thermoelastic solid with multi-dual-phase-lag model and hall current

  • Lata, Parveen;Himanshi, Himanshi
    • Coupled systems mechanics
    • /
    • 제10권2호
    • /
    • pp.103-121
    • /
    • 2021
  • The present research deals with the investigation of the effect of hall current in an orthotropic magneto-thermoelastic medium with two temperature in the context of multi-phase-lag heat transfer due to thermomechanical sources. The bounding surface is subjected to linearly distributed and concentrated loads(mechanical and thermal source).Laplace and Fourier transform techniques are used to solve the problem. The expressions for displacement components,stress components and conductive temperature are derived in transformed domain and furtherin physical domain with the help of numerical inversion techniques. The effect ofrotation and hall parameter hasshown with the help of graphs.