• Title/Summary/Keyword: dual-cured composite resin

Search Result 16, Processing Time 0.026 seconds

A STUDY ON THE VOND STRENGTH OF PORCELAIN LAMINATE AND COMPOSITE RESIN CEMENTS (라미네이트 도재와 복합레진 시멘트의 결합강도에 관한 연구)

  • Kim, Sung-Il;Lim, Ho-Nam;Park, Nam-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.91-109
    • /
    • 1991
  • The purpose of this study were to comfirm the effects of the thickness and kinds of porcelain, etchants, illumination time, elapsed time for the measurement, and chemical cure component to the bond strength of porcelain laminate and composite resin cement, and to compare the effects between the light cured resin and the dual cured resins. The etched porcelain surface, the sectioned surface crossing porcelain and resin after bonding, and the debonded surfaces were observed by the SEM. One product of laminate porcelain powder, one light cured resin and two dual cured resins were selected. Each resin cements are lightened through the thin porcelain disc which was cut from cylindrical porcelain specimen by the diamond saw, and by the light through the porcelain disc they were bonded. Changes of thickness and kinds of porcelain, etchants, illumination time, and the elapsed time for the measurement were considered as variables for the bond strength. And the bond strength of porcelain and dual cured resins under the conditions of autopolymerization or the removal of chemical cure component were measured and compared. Bond strength were measured by shear stress. The etched surface, the cross-sectioned surface, and the debonded surface of porcelain or resin were observed by SEM. On the summary of this study, the following conclusions can be stated; 1. Bond strength of light cured resin was decreased inversely by the thickened porcelain laminate and showed the lowest value to the masking dentin porcelain among 4 kinds of porcelain powder. 2. Bond strength of autopolymerization of dual cured resin without illumination in dark chamber were from 75% to 98% to the data of dual cured resin with illumination. 3. Bond strength of dual cured resin used without chemical cured components were same to them of light cured resin. 4. Cross-sectioned surface treated by silane did not show the gap between the porcelain and resin. 5. Illumination over 80 seconds did not make the significant increase of bond strength on all kinds of resin.

  • PDF

THE MICROHARDNESS OF RESTORATIVE COMPOSITE AND DUAL-CURED COMPOSITE CEMENT UNDER THE PRECURED COMPOSITE OVERLAY (아르곤레이저를 이용한 레진인레이 하부의 레진 시멘트 및 광중합형 복합레진 중합)

  • Park, Sung-Ho;Lee, Chang-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.109-115
    • /
    • 2000
  • This study was designed to evaluate the microhardness of restorative composite resin and dual-cured composite resin cement which were light cured through the 1.5mm thickness composite overlay. For restorative materials, Z100 and Tetric Ceram were used. For dual cured composite cements, Variolink II((VL II) of three consistency (low, high, ultra high) were used. To determine the optimal microhardness of Z100, Tetric Ceram and Variolink II, each material was packed into the 1mm thickness teflon mold without composite overlay and light cured for 60 seconds. Then the microhardnesses of each sample were measured, averaged and regarded as optimal hardness of each material. To evaluate the microhardness of restorative composite resin and dual-cured composite resin cement which were light cured through the 1.5mm thickness composite overlay, the composites were packed into 1mm thickness teflon mold, coverd with celluloid strip, and then precured composite overlay which was made of Targis(Ivoclar/Vivadent, Liechtenstein) was positioned. 2 types of visible light curing machine, the power density of one of which was 400$mW/cm^2$ and the other was 900$mW/cm^2$, and one type of argon laser were used to cure the restorative composite and dual cured cement. For each group, 10 sample were assigned. The light curing tip was positioned over the composite overlay and light cured for 1min., 2min. or 3min with visible light curing machine or 15sec, 30 sec, 45sec, and 60 sec with argon laser. The Vickers hardnesses of upper and lower surface of Z100, Tetric Ceram, and 3 types of VL II cement were measured. When the 900 $mW/cm^2$ curing light was used, 2min. was needed for optimal curing of Z100 and Tetric Ceram. Variolink II did not be cured optimally even though the curing time was extended to 3min. When 400$mW/cm^2$ curing light was used, 3min. was necessary for Z100, whereas 3min. was not enough for Tetric Ceram. Variolink II was not cured optimally even though the curing time was extended to 3min. When argon laser was used, Z100, Tetric Ceram and Variolink II were not cured optimally in 60 seconds.

  • PDF

THE MICROHARDNESS AND THE DEGREE OF CONVERSION OF LIGHT CURED COMPOSITE RESIN AND DUAL CURED RESIN CEMENTS UNDER PORCELAIN INLAY (도재인레이 하방에서 광중합형 복합레진과 이중중합형 복합레진시멘트의 미세경도와 중합률에 관한 연구)

  • Kim, Seung-Soo;Cho, Sung-Sik;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.17-40
    • /
    • 2000
  • Resin cements are used for cementing indirect esthetic restorations such as resin or porcelain inlays. Because of its limitations in curing of purely light cured resin cements due to attenuation of the curing light by intervening materials, dual cured resin cements are recommended for cementing restorations. The physical properties of resin cements are greatly influenced by the extent to which a resin cures and the degree of cure is an important factor in the success of the inlay. The purpose of this study was to evaluate the influence of porcelain thickness and exposure time on the polymerization of resin cements by measuring the microhardness and the degree of conversion, to investigate the nature of the correlation between two methods mentioned above, and to determine the exposure time needed to harden resin cements through various thickness of porcelain. The degree of resin cure was evaluated by the measurements of microhardness [Vickers Hardness Number(VHN)] and degree of conversion(DC), as determined by Fourier Transform Infrared Spectroscopy(FTIR) on one light cured composite resin [Z-100(Z)] and three dual cured resin cements [Duo cement(D), 3M Resin cement(R), and Dual cement(DA)] which were cured under porcelain discs thickness of 0mm, 1mm, 2mm, 3mm with light exposure time of 40sec, 80sec, 120sec, and regression analysis was performed to determine the correlation between VHN and DC. In addition, to determine the exposure time needed to harden resin cements under various thickness of porcelain discs, the changes of the intensity of light attenuated by 1mm, 2mm, and 3mm thickness of porcelain discs were measured using the curing radiometer. The results were obtained as follows ; 1. The values of microhardness and the degree of conversion of resin cements without intervening porcelain discs were 31~109VHN and 51~63%, respectively. In the microhardness Z was the highest, followed by R, D, DA. In the degree of conversion, D and DA was significantly greater than Z and R(p<0.05). 2. The microhardness and the degree of conversion of the resin cements decreased with increasing thickness of porcelain discs, and increased with increasing exposure time, D and R showed great variation with inlay thickness and exposure time, whereas, DA showed a little variation. 3. The intensity of light through 1mm, 2mm, and 3mm porcelain inlays decreased by 0.43, 0.25, and 0.14 times compared to direct illumination, and the respective needed exposure times are 53 sec, 70 sec, and 93 sec. In D and R, 40 sec of light irradiation through 2mm porcelain disc and 80 sec of light irradiation through 3mm porcelain disc were not enough to complete curing. 4. The microhardness and the degree of conversion of the resin cements showed a positive correlationship(R=0.791~0.965) in the order of R, D, Z, DA. As the thickness of porcelain discs increased, the decreasing pattern of microhardness was different from that of the degree of conversion, however.

  • PDF

Influence of Sodium Hypochlorite on Bond Strength of Dual-cured Core Build-up Resin Composite (이원중합형 코어 축조용 복합레진의 결합강도에 대한 NaOCI의 영향에 대한 연구)

  • Lee, Jun-Bong;Park, Jong-Duk;Kwon, Su-Mi;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.4
    • /
    • pp.283-292
    • /
    • 2007
  • Two-step or one-step bonding systems generally inhibit curing process of dual-cured core build-up resin composite for their adhesive acidity. In addition this dual-cured core build-up resin composite can be applied to dentin of pulp chamber and root at the time that complete the endodontic treatment. The purpose of this investigation was to determine the influence of sodium hypochlorite on rnicrotensile bond strength of dual-cured core build-up resin composite. Extracted human molars were horizontally sectioned with 1mm thickness using low speed diamond saw. After the sectioned specimens were divided into 8 groups, adhesive systems (Clearfil SE-Bond, Prime&Bond NT[2-step, 1-step], Adper Prompt L-Pop) were then applied with or without sodium hypochlorite pretreatment. The treated specimen was filled with dual-cured core build-up resin composite (Luxacore, DMG corp., German). Then light cured for 40 seconds and soaked in $37^{\circ}C$ water bath for 24 hours. After the treated specimen was grinded with 1mm width and measured rnicrotensile bond strength by testing machine. Additionally 8 teeth were prepared for SEM evaluation. The results were as follows. : NaOCl treated groups generally had lower rnicrotensile bond strength but did not show any difference statistically except Adper Prompt L-Pop. When the teeth were treated by NaOCl, though the difference of applied adhesive system, it had no statistically significant difference within the NaOCl treated groups except the relation of between ClearFil SE-Bond adhesive system and Adper Prompt L-Pop adhesive system. In the SEM evaluation, NaOCl treated groups presented relatively long resin tags and incomplete hybrid layer formation generally.

Cementation technique in indirect tooth colored restoration

  • Park, Sung-Ho
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.595-595
    • /
    • 2001
  • As the interest for esthetic restoration is increasing, the usage of composite resin is increasing. The usage of composite resin is not limited to anterior teeth but is spreading to posterior area using direct & indirect methods. Generally, dual or chemical cure resin cement has been used for setting composite or porcelain inlay restoration. However, chemical cure resin cement has limited working time and it's difficult to remove excess cement from the tooth and the restoration. The dual cured composite is also difficult to remove from the tooth surface.(omitted)

  • PDF

CURING REACTION OF THE LIGHT CURED FLOWABLE COMPOSITE RESINS THROUGH THE ENDODONTIC TRANSLUCENT FIBER POST (투명 fiber 포스트를 통한 광중합형 접착레진의 중합 반응)

  • Ahn Seok;Park Sang-Won;Yang Hong-So;Vang Mong-Sook;Park Ha-Ok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the efficacy and substitute possibility of a newly developed flowable composite resins as a luting cement for translucent fiber post. Material & Method: Two kinds of 12 mm translucent fiber Post (D.T. Light-Post (Bisco, USA) and FRC Postec (Ivoclar vivadent, Liechtenstein) was inserted into the teflon mold (7 mm diameter, 9 mm long) and Filtek-Flow (3M ESPE. USA), a light activated flowable composite resin, was polymerized for 60 seconds through the post. Also, the post was cut from the tip to 9 mm, 6 mm, 3 mm, and Filtek-Flow was light cured according to each length. For comparison, 60 seconds light-cured and 24 hours self-cured two dual cured resin cement (Duo-cement (Bisco, USA) and 2 Panavia-F (Kuraray, Japan)) samples were prepared as control group. Also cavities (1 mm in width, 1 mm in depth and 12 mm in length) were prepared using acrylic plate and aluminum bar, and flowable composite resin was flied and light cured by the diffused light from the fiber post's side wall. The degree of polymerization was measured according to the distance from curing light using Vickers' hardness test. Result: Within the limitation of this study, the following conclusions were drawn: 1. Vickers' hardness of light cured dual cured resin cement and flowable composite resin decreased from Panavia-F, Filtek-Flow and Duo-cement accordingly (p<0.05). In the dual curing resin cement, light curing performed group showed higher surface hardness value than self cured only group (p<0.05). 2. Surface hardness ratio (light cured through fiber post /directly light cured) of D.T. Light-Post using Filtek-Flow showed about 70% in the 6 mm deep and about 50% in the 12 mm deep FRC Postec showed only 40% of surface hardness ratio. 3. Surface hardness ratio by diffused light from the post's side wall showed about 50% at 6 mm and 9 mm deep, and about 40% at 12 mm deep in D.T. Light-Post. However, FRC Postec showed about 40% at 6 mm deep, and almost no polymerization in 9 mm and 12 mm deep.

FRACTURE RESISTANCE OF CROWN-ROOT FRACTURED TEETH REPAIRED WITH DUAL-CURED COMPOSITE RESIN AND HORIZONTAL POSTS (수평 포스트와 이중중합 복합레진으로 수복된 치관-치근 복합파절 치아의 파절 저항성에 관한 연구)

  • Chang, Seok-Woo;Lee, Yong-Keun;Kyung, Seung-Hyun;Yoo, Hyun-Mi;Oh, Tae-Seok;Park, Dong-Sung
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.5
    • /
    • pp.383-389
    • /
    • 2009
  • The purpose of this study was to investigate the fracture resistance of crown-root fractured teeth repaired with dual-cured composite resin and horizontal posts. 48 extracted human premolars were assigned to control group and three experimental groups. Complete crown-root fractures were experimentally induced in all control and experimental teeth. In the control group. the teeth (n=12) were bonded with resin cement and endodontically treated. Thereafter, the access cavities were sealed with dual-cured composite resin. In composite resin core-post group (n=12), the teeth were endodontically treated and access cavities were sealed with dual-cured composite resin. In addition, the fractured segments in this group were fixed using horizontal posts. In composite resin core group (n=12), the teeth were endodontically treated and the access cavities were filled with dual-cured composite resin without horizontal posts. In bonded amalgam group (n = 12), the teeth were endodontically treated and the access cavities were sealed with bonded amalgam. Experimental complete crown-root fractures were induced again on repaired control and experimental teeth. The ratio of fracture resistance to original fracture resistance was analyzed with Kruskal-Wallis test. The results showed that teeth in control and composite resin core-post group showed significantly higher resistance to re-fracture than those in amalgam core group (p < 0.05). The resistance to refracture was high in the order of composite resin - post group, control group, composite resin group and bonded amalgam group. Within the scope of this study, the use of horizontal post could be beneficial in increasing the fracture resistance of previously fractured teeth.

EFFECT OF INTERMEDIATE RESIN HYDROPHILICITY ON BOND STRENGTH OF SINGLE STEP ADHESIVE (중간레진의 친수성이 상아질 접착에 미치는 영향)

  • Kim, Yong-Sung;Park, Sang-Hyuk;Choi, Gi-Woon;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.5
    • /
    • pp.445-458
    • /
    • 2007
  • The purpose of this study was to evaluate the bond strength of a new Single step system with different curing mode composites, and to evaluate the effect of the intermediate resins which have different hydrophilicity on bonding ability by means of the micro shear bond testing and TEM examination for the adhesive interface. The adhesive used in this study was an experimental single step system (Bisco Inc., Schaumburg IL). Experimental groups were produced by using six kinds of intermediate resin having different hydrophilicity that was hydrophilic, hydrophobic and most hydrophobic resin and as filled or not after applying adhesive. Each experimental group was further divided into two subgroups whether the adhesive was light cured or not. Dual cured composite (Bis Core, Bisco Ltd., Schaumburg, IL) was placed on the adhesive layer as light cure or self cure mode. The results or bond strength were statistically analyzed using one way ANOVA and multiple comparisons are made using Tukey's test at ${\alpha}\;<\;0.05$ level. The results of this study were as follows ; 1. The application of intermediate resin did not increase the bond strength for light cured composite. 2. The bond strength of an experimental adhesive with self cured composite was significantly increased by the application of intermediate resin layer. 3. The bond strength of adhesive was irrespective of the cure or not of itself before intermediate resin layer applied. 4. As applied hydrophilic resin layer was, the initial bond strength was higher than both hydrophobic and most hydrophobic one used but there was no significance. Using a single step adhesive with dual/self cured composite, the incompatibility between both of them should be solved by the application of intermediate hydrophobic resin to reduce the adhesive permeability. However, Single step adhesive can be used in the light cured composite restoration without any decrease of the initial bond strength.

Effect of solution temperature on the mechanical properties of dual-cure resin cements

  • Kang, En-Sook;Jeon, Yeong-Chan;Jeong, Chang-Mo;Huh, Jung-Bo;Yun, Mi-Jung;Kwon, Yong-Hoon
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.133-139
    • /
    • 2013
  • PURPOSE. This study was to evaluate the effect of the solution temperature on the mechanical properties of dualcure resin cements. MATERIALS AND METHODS. For the study, five dual-cure resin cements were chosen and light cured. To evaluate the effect of temperature on the specimens, the light-cured specimens were immersed in deionized water at three different temperatures (4, 37 and $60^{\circ}C$) for 7 days. The control specimens were aged in a $37^{\circ}C$ dry and dark chamber for 24 hours. The mechanical properties of the light-cured specimens were evaluated using the Vickers hardness test, three-point bending test, and compression test, respectively. Both flexural and compressive properties were evaluated using a universal testing machine. The data were analyzed using a two way ANOVA with Tukey test to perform multiple comparisons (${\alpha}$=0.05). RESULTS. After immersion, the specimens showed significantly different microhardness, flexural, and compressive properties compared to the control case regardless of solution temperatures. Depending on the resin brand, the microhardness difference between the top and bottom surfaces ranged approximately 3.3-12.2%. Among the specimens, BisCem and Calibra showed the highest and lowest decrease of flexural strength, respectively. Also, Calibra and Multilink Automix showed the highest and lowest decrease of compressive strength, respectively compared to the control case. CONCLUSION. The examined dual-cure resin cements had compatible flexural and compressive properties with most methacrylate-based composite resins and the underlying dentin regardless of solution temperature. However, the effect of the solution temperature on the mechanical properties was not consistent and depended more on the resin brand.

ENAMEL ADHESION OF LIGHT-AND CHEMICAL-CURED COMPOSITES COUPLED BY TWO STEP SELF-ETCH ADHESIVES (2단계 자가 산부식 접착제와 결합된 광중합과 화학중합 복합레진의 법랑질 접착)

  • Han, Sae-Hee;Kim, Eun-Soung;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.169-179
    • /
    • 2007
  • This study was to compare the microshear bond strength $({\mu}SBS)$ of light- and chemically cured composites to enamel coupled with four 2-step self-etch adhesives and also to evaluate the incompatibility between 2-step self-etch adhesives and chemically cured composite resin. Crown segments of extracted human molars were cut mesiodistally, and a 1 mm thickness of specimen was made. They were assigned to four groups by adhesives used: SE group (Clearfil SE Bond) AdheSE group (AdheSE), Tyrian group (Tyrian SPE/One-Step Plus), and Contax group (Contax) Each adhesive was applied to a cut enamel surface as per the manufacturer's instruction. Light-cured (Filtek Z250) or chemically cured composite (Luxacore Smartmix Dual) was bonded to the enamel of each specimen using a Tygon tube. After storage in distilled water for 24 hours, the bonded specimens were subjected to ${\mu}SBS$ testing with a crosshead speed of 1 mm/minute. The mean ${\mu}SBS$ (n=20 for each group) was statistically compared using two-way ANOVA, Tukey HSD, and t test at 95% level. Also the interface of enamel and composite was evaluated under FE-SEM. The results of this study were as follows ; 1. The ${\mu}SBS$ of the SE Bond group to the enamel was significantly higher than that of the AdheSE group, the Tyrian group, and the Contax group in both the light-cured and the chemically cured composite resin (p < 0.05). 2. There was not a significant difference among the hdheSE group, the Tyrian group, and the Contax group in both the light-cured and the chemically cured composite resin. 3. The ${\mu}SBS$ of the light-cured composite resin was significantly higher than that of the chemically cured composite resin when same adhesive was applied to the enamel (p < 0.05). 4. The interface of enamel and all 2-step self-etch adhesives showed close adaptation, and so the incompatibility of the chemically cured composite resin did not show.