• Title/Summary/Keyword: dual-band antenna

Search Result 395, Processing Time 0.033 seconds

Design and Fabrication of Dual Band Antenna for LTE / LTE-A for Broadband Mobile Communication System (광대역 이동통신 시스템을 위한 LTE/LTE-A용 이중대역 안테나 설계 및 제작)

  • Kang, Sung-Woon;Oh, Mal-Geun;Kim, Kab-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.442-448
    • /
    • 2018
  • In this paper, a microstrip antenna for LTE / LTE-A is designed and fabricated for a broadband mobile communication system. The proposed antenna is designed to have the characteristics of using FR-4 (er = 4.3), size of $40mm{\times}50mm$, and LTE / LTE-A frequency bands of 2.3 GHz and 2.5 GHz. 2014, and the simulation result shows that the gain is 2.391 dBi at 2.3 GHz and 2.566 dBi at 2.5 GHz. The S-parameter also showed a result of less than -10 dB (WSWR 2: 1) in the desired frequency band. The broadband mobile communication antenna has been miniaturized, high performance, and light weight, and an excellent and low cost system is continuously being developed, and a broadband mobile communication system is used by many people. Since LTE / LTE-A technology has been proposed according to the development of system and demand, it is expected that many users will design and manufacture antennas satisfying the above conditions and apply the applied technology.

High Efficiency Rectenna for Wireless Power Transmission Using Harmonic Suppressed Dual-mode Band-pass Filter (고조파 억압 이중모드 대역통과 여파기를 이용한 2.45 GHz 고효율 렉테나 설계)

  • Hong, Tae-Ui;Jeon, Bong-Wook;Lee, Hyun-Wook;Yun, Tae-Soon;Kang, Yong-Cheol;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.6
    • /
    • pp.64-72
    • /
    • 2009
  • In this paper, a high efficiency 2.45 GHz rectenna with a microstrip patch antenna and a dual-mode band-pass filter in which the 2nd and 3rd harmonics are suppressed, is presented. From the experimental results, the 2.45GHz rectenna using 3rd harmonic suppressed dual-mode BPF shows the conversion efficiency of 41.6% with incident power density of 0.3 mW/cm2 and the received power of 1.66 mW. This result shows high conversion efficiency because the received power of this rectenna is lower than other rectennas to be compared with. This rectenna can be applied to the WPT (Wireless Power Transmission) field for energy harvesting. Also, it is expected to be used to provide the stand-by power for the low power devices for USN, and wireless power transfer in sensor application of MEMS devices.

  • PDF

Implementation of Mini Chip Antenna suitable for Ubiquitous Environment (유비쿼터스 환경에 적합한 소형 칩 안테나 구현)

  • Kang, Jeong-Jin;Choi, Jong-In;Lee, Young-Dae;Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.81-86
    • /
    • 2008
  • The paradigm of information & communication is rapidly changed into ubiquitous environment based electromagnetic wave, and antenna technology in the wireless ubiquitous communication is remarkably developed. Mini chip antenna has its within small card compared to the external AP antenna. Designed and Fabricated WLAN antenna has a broadband characteristics of 2.4~2.5GHz and 4.9~5.85GHz, and can be used triple mode of IEEE 802.11.a,g.b, and it has comparatively a constant performance in the dual frequency band.

  • PDF

Optimal Design of a Planar-Type Antenna with a Reduced Number of Design Parameters Using Taguchi Method and Adaptive Particle Swarm Optimization

  • Lee, Jeong-Hyeok;Jang, Dong-Hyeok;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2019-2024
    • /
    • 2014
  • This paper presents a method to optimize the design of a planar-type antenna and reduce the number of design parameters for rapid computation. The electromagnetic characteristics of the structure are analyzed, and Taguchi method is used to identify critical design parameters. Adaptive particle swarm optimization, which has a faster convergence rate than particle swarm optimization, is used to achieve the design goal effectively. A compact dual-band USB dongle antenna is tested to verify the advantage of the proposed method. In this case, we can use only five selected geometrical parameters instead of eighteen to accelerate the optimization of the antenna design. The 10 dB bandwidth for return loss ranges from 2.3 GHz to 2.7 GHz and from 5.1 GHz to 5.9 GHz, covering all the WiBro, Bluetooth, WiMAX, and 802.11 b/g/n WLAN bands in both simulation and measurement. The optimization process enables the antenna design to achieve the required performance with fewer design parameters.

A Study on the Optimal Location of Mobile Communication Antennas for Smart Containers (스마트컨테이너용 이동통신 안테나의 최적 위치 선정에 관한 연구)

  • EunKyu Lee;SangWon Park;HyungRim Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.5
    • /
    • pp.289-295
    • /
    • 2024
  • Research has been actively conducted recently to secure the visibility of logistics by equipping cargo transportation containers with mobile communication devices. This paper describes the design and location selection for a mobile communication antenna to be mounted on a smart container to enable stable mobile communication. The mobile communication antenna proposed in this paper is a dual-band linear polarization antenna. Its operating frequency ranges are 698MHz - 960MHz and 1710MHz - 2690MHz, the VSWR is ≤3.1, and the gain is ≤3.5dBi. Once fabricated, the mobile communication antenna was installed on the container, and RSRP and RSRQ, the mobile communication radio quality indices, were measured to select the optimal location for the antenna.

Design and Fabrication of A Doppler Radar for Motion Detector Using Frequency Tunable Hairpin Resonator (주파수 가변형 헤어핀공진기를 이용한 동작감지용 도플러 레이더센서의 제작 및 설계)

  • Kim, Eun-Su;Kim, Gue-Chol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.931-936
    • /
    • 2018
  • We designed an x-band radar for motion detector using a frequency tunable hairpin ring resonator. The proposed doppler radar sensor can vary the oscillation frequency by applying a hairpin resonator using a varactor diode to the oscillator, and this can also reduce the size by transmitting and receiving a signal from Tx/Rx dual antenna. The fabricated doppler radar sensor was fabricated in $30{\times}24mm$, and it was confirmed that the pulse width difference occurred according to the distance from the object. The measurement results showed oscillation at 10.525GHz. We confirmed that it is enough to use as radar for motion detection from the measured results.

A Single Layer Multi Band Microstrip Patch Antenna for GPS L1/L2, GLONASS Receiver Applications (GPS L1/L2, GLONASS 수신기용 다중 대역 단일 패치 안테나)

  • Kim, Ji-Hae;Kim, Mi-Suk;Kim, Jong-Seong;Son, Seok-Bo;Kim, Young-Baek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.990-998
    • /
    • 2011
  • In this paper, we have designed a multi-band single layer microstrip patch antenna with slots for GPS L2/L1, GLONASS receivers. The antenna has dual feed structure and consists of single layer microstrip patch with slots and impedance matching circuit. The antenna specifications are a VSWR(Voltage Standing Wave Ratio) of less than 2.0, RHCP(Right-Hand Circular Polarization) characteristics over the operating frequency bands of GPS L2(1,227.6 MHz)/L1(1,575.42 MHz) and GLONASS(1,602 MHz), the maximum active antenna gain of more than 30 dB and the axial ratio of less than 3 dB. The antenna has been successfully evaluated by various tests.

Design of TX/RX Broadband L-Type Circular Polarization Antenna using LTCC at K/Ka Band (K/Ka 대역에서의 LTCC를 이용한 송수신 겸용 L형태 광대역 원형 편파 안테나)

  • Oh Min-Seok;Cheon Yung-Min;Kim Sung-Nam;Lee Jong-Moon;Pyo Cheol-Sig;Choi Jae-Ick;Cheon Changyul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.872-879
    • /
    • 2004
  • The TX/RX broadband L-type circular polarization antenna using LTCC(Low Temperature Co-fired Ceramic) for satellite communication at K, Ka band(20~21 GHz/30~31 GHz) has been presented. This antenna has been analyzed in compensation for LTCC with relative permittivity 5.2 and could have been integrated with RF component. Also antennas on LTCC enable :o reduce loss of RF system due to integrate with RF circuits and to light weight, and thus, generally one can reduce size of the RF system. As the geometry of this antenna presented is made simple by L type of monopole antenna, it is easily manufactured by LTCC progress and enables to reduce loss.

Design of a Dual-Band GPS Array Antenna (이중 대역 GPS 배열 안테나 설계)

  • Kim, Heeyoung;Byun, Gangil;Son, Seok Bo;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.678-685
    • /
    • 2013
  • In this paper, we propose a design of dual-band patch antennas for Global Positioning System(GPS) applications, and the designed antenna is used as an individual element of GPS arrays. A low distortion and a high isolation of the array are achieved by adjusting rotating angles of each array element. The antenna consists of two radiating patches that operate in the GPS $L_1$ and $L_2$ bands, and the two ports feeding network with a hybrid chip coupler is adopted to achieve a broad circular polarization(CP) bandwidth. The rotating angles of each antenna element are varied with four directions(${\phi}=0^{\circ}$, ${\phi}=90^{\circ}$, ${\phi}=180^{\circ}$, ${\phi}=270^{\circ}$) in order to minimize the pattern distortion and maximize the isolation among array elements. The measurement shows bore-sight gains of 0.3 dBic($L_1$) and -1.0 dBic($L_2$) for the center element. Bore-sight gains of 1.6 dBic($L_1$) and 1.0 dBic($L_2$) are observed for the edge element. This results demonstrate that the proposed antenna is suitable for GPS array applications.

Dual Band Microstrip Antenna Design for GPS / WiFi (GPS/WiFi용 이중대역 마이크로스트립 안테나 설계)

  • Kim, Gyeong-Rok;Kang, Sung-Woon;Hong, Yong-Pyo;Kim, Kab-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.445-448
    • /
    • 2018
  • In this paper, we design microstrip antenna for GPS / WiFi for broadband mobile communication. The proposed antenna is designed to be used in the FR-4 (er = 4.3), the size is $40mm{\times}50mm$, and it can be used in the GPS frequency band of 1.6GHz and the WiFi frequency band of 5GHz. 2014, and the simulation result shows that the gain is 1.909dB at 1.6GHz and 4.607dB at 5GHz. The S-parameter also showed a result of less than -10dB (WSWR2: 1) in the desired frequency band. Recently, it is expected that GPS navigation system, which is widely used in smart phones and tablet PCs, can be easily and conveniently used by combining and applying GPS with WiFi.

  • PDF