• Title/Summary/Keyword: dual phase high strength steel

Search Result 43, Processing Time 0.023 seconds

Precipitation Behavior of Laves Phase and Mechanical Properties of 10%Cr Ferritic Heat-resistant Steel Applied to the Power Plants (발전플렌트용 10Cr페라이트 내열강의 라베스상 석출거동 및 기계적 성질)

  • Kang, C.Y.;Nam, K.W.;Kim, H.J.;Kim, C.G.;Bae, D.S.;Lee, J.M.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.97-103
    • /
    • 2001
  • The present study was investigated changes of precipitation behaviour of laves phase in ferrite single phase and ferrite-martensite dual phase and the mechanical properties of 10%Cr ferritic alloys. In the ferrite phase, laves phase was mainly precipitated, whereas in the martensite phase, carbide was preferentially formed during the initial stage of aging and with increasing aging time. Laves phase and carbide were simultaneously precipitated by precipitation of laves phase at around carbide. Strength and toughness were lowered by the disk-type precipitator in the initial stage of aging and toughness was recovered with increasing of aging time and then, decreasing by precipitation of laves phase.

  • PDF

Effects of the Martensive Volume Fraction on the Behavior of Impact Fracture of Dual Phase Steels (複合組織鋼의 衝擊破壞擧動에 영향 을 주는 마르텐사이트 體積率의 效果)

  • 송삼홍;오택열;장두수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.372-378
    • /
    • 1983
  • Use of dual phase steel are growing for its high strength and light weight in automobiles. The effect of the martensite volume fraction with various impact velocities on the strength, ductility and absorbed energy of dual phase (ferrite-martensite) steels were investigated in low carbon 1.5% Mn steels which were soaked at 700.deg. C, 730.deg. C, 780.deg. C, and brine quenched. Both the yield load and the maximum impact load increased when the martensite volume fraction increased, the loading time and the absorbed energy of the specimen decreased when the martensite volume fraction increased.

Fatigue characteristics of spot welding between high strength steel and galvanized steel sheet (고장력 강판과 아연도금 강판문의 점용접 피로특성)

  • 서창민;강성수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.4
    • /
    • pp.747-754
    • /
    • 1988
  • High strength steels (HS) of dual phase and monogalvanized steel sheets (GA ; plated plane, GAB ; bare plane0 were used to investigate the fatigue strengths of four kinds of single-spot-welded joint specimen under tensile-shear repeated load. The specimen is classified as the same mating metal specimen (HS*HS, GA*GAB) and different mating metal specimen (HS*GA, HS*GAB). Some of the results are ; (1) Static tensile load of single-spot-welded joint specimens is proportional to tensile strength of metal and rigidity of mating metal sheet. (2) Fatigue life of HS*HS specimens increased about 20% longer than that of GA*GAB specimens in low cycle range. (3) In different mating metal specimens, the fatigue life of HS*GA specimens increased about 84% more that of HS*HS specimens in high cycle range.

Effects of Phosphorus and in-situ Post-heat Pulse Conditions on Resistance Spot Weldability of High Si DP980 Steel Sheet (고Si DP980강 스폿 용접 특성에 미치는 Phosphorus (P) 및 in-situ 후열처리 펄스 조건의 영향)

  • Choi, Du-Youl
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.21-26
    • /
    • 2015
  • Recently, application of UHSS(Ultra High Strength Steels) whose tensile strength is over 1000MPa to car body structure are growing due to great needs for light weighting and improved crash worthiness. However, their poor weldability is one of obstacles to expand selecting to car body. In this study, effect of Phosphorus contents on resistance spot weldability of high elongation DP980 steel whose Si content is over 1% was investigated. The cross tension strength (CTS) was decreased showing partial interface fracture as Phosphorus content increase because of solidification segregation of Phosphorus. In order to improve resistance spot weldability by modification of welding condition, in-situ post-weld heating pulse was introduced after main pulse. The optimum cooling time between main and post pulse and post-pulse current condtion were determined through FEM welding simulation and DOE tests. The CTS was increased about 1.5 time showing plug fracture. The decrease of Phosphorus segregation was found to be a major reason for weld ductility and CTS improvement.

Effect of Si content on Nugget Diameter of Electric Resistance Spot Welded Dual Phase Steel (DP강의 전기저항점용접부 너깃직경에 미치는 Si 함량의 영향)

  • Kong, Jong-Pan;Kang, Gil-Mo;Han, Tae-Kyo;Chin, Kwang-Geun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.99-105
    • /
    • 2011
  • In this study, effect of Si content on nugget diameter in electric resistance spot welded dual-phase(DP) steel was investigated. The cold rolled DP steels with different Si content (0.5, 1.0, 1.5, 2.0 wt.%) were used and thickness of those sheet was 1.2mm. With increasing Si content, nugget diameter was increased at the same welding current. This is attributed to increase of heat input result from high resistivity. Also, nugget diameter was increased with an increase in Si content for the same heat input. For this reason, the melting point of DP steel is lowered with an increase in the Si content. And solid DP steel can easily be transformed to a liquid phase because the low melting point. Finally, a prediction formula for the nugget diameter(N.D.) could be obtained in terms of heat input(Q) and melting point(M.P) as follows: N.D.(mm) = 0.11Q(J) - 0.0031 M.P.($^{\circ}C$) + 0.32.

Characteristics of Zn-Ni Electrodeposition of 60 kgf/$\textrm{mm}^2$ Grade Transformation Induced Plastic Steel Sheets for Automotive Body (60 kgf/$\textrm{mm}^2$급 자동차용 변태유기소성강화강 Zn-Ni 전기도금 특성 연구)

  • Kim D. H.;Kim B. I.;Jeon Y. T.;Jeong Y. S.
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.263-272
    • /
    • 2004
  • High strength steels such as transformation induced plastic steel, dual phase and solid solution Hardening have been developed and continuously improved due to the intensified needs in the automotive industry. But silicon and manganese in transformation induced plastic steels were known to exhibit harmful effects on galvannealing reaction by oxide film formed during heat treatment. Therefore, in this work, the applicability of Zn-Ni electrodeposition instead of hot dip galvannealed coating to transformation induced plastic steels was evaluated and optimum electroplating condition was investigated. Based on these investigations optimized electroplating conditions were proposed and Zn-Ni electrogalvanized steel sheet was produced by EGL (electrogalvanized line). Its perfomance properties for automotive steel was evaluated.

Mechanical Properties of the Flash Butt Welded Joint of 590MPa High Strength Steel (590MPa급 고강도강 플래시버트 용접이음부의 기계적특성)

  • Jeong, Bo-Young;Woo, In-Su;Kim, Jeong-Kil;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.55-61
    • /
    • 2007
  • Flash butt weldability of 590MPa dual phase steel is carried out under micro metallographical examination and macro mechanical property tests. The objective of present study is to investigate the cause that brings on bond line fracture, and is to improve mechanical properties of the flash butt welded joint. The joint of flash butt welding has a superior tensile property, but has bad formability due to oxide formed at bond interface. The HAZ softening in the weld joint does not show. It was found that mechanical properties were increased with optimizing welding parameters and making application of oil dripping and post-weld heat treatment.

Microstructure and Tensile Strength Property of Arc Brazed DP steel using Cu-Sn Insert Metal (Cu-Sn 삽입금속을 이용한 DP강의 아크 브레이징 접합부의 미세조직과 인장특성)

  • Cho, Wook-Je;Cho, Young-Ho;Yun, Jung-Gil;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • The following results were obtained, microstructures and tensile properties in arc brazed joints of DP(dual phase) steel using Cu-5.3wt%Sn insert metal was investigated as function of brazing current. 1) The Fusion Zone was composed of ${\alpha}Fe+{\gamma}Cu$ and Cu23Sn2. The reason for the formation of these solid solutions. Despite, Fe & Cu were impossible to solid solution at room temperature. It's melting & reaction to something of insert metal & Base Metal (DP Steel) by Arc. Brazing Process has faster cooling rate then Cast Process, Supersaturated solid solution at room temperature. 2) The increase Hardness of Fusion Zone was directly proportional to the rise of welding current. Because, ${\alpha}Fe+{\gamma}Cu$ phase (higher hardness than the Cu23Sn2.(104.1Hv < 271.9Hv)) Volume fraction was Growth, due to increasing the amount of base metal melting by High current. 3) The results of tensile shear test by Brazing, All specimens happen to fracture in Fusion Zone. On the other hand, when Brazing Current increasing tend to rise tensile load. but it was very small, about 26-30% of the base metal. 4) The result of fracture analysis, The crack initiate at Triple Point for meet to Upper B.M/Under B.M/Fusion Zone. This Crack propagated to Fusion zone. So ruptured by tensile strength. The Reason to in the fusion zone fracture, Fusion zone by Brazing of hardness (strength) was very lower then the base metal (DP steel). In addition the Fusion Zone's thickness in triple point was thin than the base metal's thickness in triple point.

Microstructure and Mechanical Properties of Cr-Mo Steels for Nuclear Industry Applications

  • Kim, Sung-Ho;Ryu, Woo-Seong;Kuk, Il-Hiun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.561-571
    • /
    • 1999
  • Microstructure and mechanical properties of five Cr-Mo steels for nuclear industry applications have been investigated. Transmission electron microscopy, energy dispersive spectrometer, differential scanning calorimeter, hardness, tensile, and impact test were used to evaluate the Cr and W effect on the microstructure and mechanical properties. Microstructures of Cr-Mo steels after tempering are classified into three types : bainitic 2.25Cr-lMo steel, martensitic Mod.9Cr-lMo, HT9M, and HT9W steels, and dual phase HT9 steel. The majority of the precipitates were found to be M$_{23}$C$_{6}$ carbides. As minor phases, fine needle-like V(C,N), spherical NbC, fine needle-like Cr-rich Cr$_2$N, and Cr-rich M$_{7}$C$_3$were also found. Addition of 2wt.% W in Cr-Mo steels retarded the formation of subgrain and dissolution of Cr$_2$N precipitates. Hardness and ultimate tensile strength increased with increasing Cr content. Though Cr content of HT9W steel was lower than that of HT9 steel, the hardness of HT9W was higher due to the higher W content. W added HT9W steel had the highest ultimate tensile strength above $600^{\circ}C$. But impact toughness of W added steel (HT9W) and high Cr steel (HT9) was low.w.w.

  • PDF

The Influence of Hydrogen Charging with the Volume Fraction of Phases in Dual Phase Steels (다상조직강의 조직 분율에 따른 수소주입의 영향)

  • Kim, Han-Sang;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.284-288
    • /
    • 2012
  • A study on microstructure control of multi-phase steel have been implemented to higher strength with improved formability. However, it is well known that the high strength of steel are susceptible to hydrogen embrittlement. The mechanisms of hydrogen embrittlement is caused by complex interactions. In this paper, the test specimens were fabricated to 5 type of 590DP steels at different levels of volume faction. The hydrogen charging was conducted by electrochemical hydrogen-charge method with varying charging time. The relationship between hydrogen concentration and volume fraction of 590DP steel was established by SP test and SEM-fractography. It was shown that the hydrogen amounts charged in 590DP steels increased with increasing the volume faction of austenite. The maximum loads of the 590DP steels in SP test were sharply decreased with increasing hydrogen charging time. The results of SEM-fractography investigation showed typical brittle-fracture surfaces for hydrogen-charged 590DP steels.