• Title/Summary/Keyword: dual cure resin cement

Search Result 32, Processing Time 0.023 seconds

AN EXPERIMENTAL STUDY OF THE DEGREE OF CONVERSION AND CYTOTOXICITY OF DUAL CURE RESIN CEMENTS (수종 이원중합 레진 씨멘트의 중합률 및 세포 독성에 관한 실험적 연구)

  • Roh, Byoung-Duck;Park, Seong-Ho;Lee, Chung-Suck
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.33-54
    • /
    • 1995
  • The degree of conversion of composite resin was known to have influence on the mechanical properties of composite materials such as hardness, strength, wear resisitance, dimensional and color stability. Also unreacted monomer was reported to be harmful to the pulp. So the degree of conversion was a very important factor in the success of composite resin restorations. In recent, the dual cure resin cement was developed with the advocations that it could increase the curing rates in the sites where the curing ligt could not reach. Moreover many manufactors added some adhesive components in the resin cement. This study was undertaken to observe the effects of curing depth and light curing times on the degree of conversion of dual cure resin cements. CR INLAY CEMENT, DUAL CEMENT and OPTEC BOND, by the Fourier transform Infrared analysis, changing the curing depth 1mm, 2mm and 3mm, and varying the light curing time 20 seconds, 40 seconds and 80 seconds at each depth. The cytotoxicity of dual cure resin cements was tested by the in vitro MTT method using L929 cell. The results was evaluated and compared statistically. The results were obtained as follows : 1. The dual cure resin cements reavealed various degree of conversion, CR INLAY CEMENT and DUAL CEMENT had a tendency to be more reactive to the light cure and OPTEC BOND was a more chemical one. 2. CR INLAY CEMENT and DUAL CEMENT showed the lowest degree of conversion in 2 mm depth, and in 3mm depth the degree of conversion increased, which were due to the chemical cure of dual cures, but OPTEC BOND showed decreasing degree of conversion with increasing curing dept h and all experimental groups showed lower degree of conversion than CHEMICAL group which cured in dark room with no light, so the weak light-curing of dual cure resin cement prevented the chemical cure. (P<0.05) 3. CR INLAY CEMENT and DUAL CEMENT showed increasing degree of conversion in 1 mm and 3 mm, according to the increasing cure times, but in 2 mm depth the degree of conversion decreased with increasing light-curing times and OPTEC BOND showed contrary tendency, but there was no ststistical importance in the differences among the experimental group.(P>0.05) 4. The optical density by MTT assay of extractions of CR INLAY CEMENT, DUAL CEMENT and OPTEC BOND revealed no statitically important differences comparing with optical density of negative control.(P>0.05) 5. CR INLAY CEMENT showed a tendency of increaing cytotoxicity with days and DUAL CEMENT and OPTEC BOND showed higher cytotoxicity in 2 days than in 4 days, but there was no statistical importance in the differences.(P>0.05).

  • PDF

Shear Bond Strength of Resin Cements on the IPS e.max Press (IPS e.max Press에 대한 수종 레진 시멘트의 전단결합강도에 관한 연구)

  • Lee, Kyung-Eun;Kim, Yu-Lee;Shin, Chang-Yong;Dong, Jin-Keun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.311-322
    • /
    • 2010
  • The purpose of this study was to evaluate the bond strengths between IPS e.max Press and four different types of resin cements that often used for esthetic restoration. Disc shaped IPS e.max Press blocks(N=40, diameter: 12mm, thickness: 3mm) were fabricated according to the manufacture's instruction and cleaned with ultrasonic cleaner. They were embedded into an autopolymerizing acrylic resin. Fourty cylinder shaped resin block(Filtek Z350, diameter: 4.5mm, thickness: 3mm) were fabricated using a plastic tube. Each specimens were randomly divided into 4 experimental group and bonded each other using 4 different resin cements(Variolink II(light-cure), Variolink II(dual-cure), Calibra, Super-Bond C&B) according to the manufactures' recommendations. All the specimens were stored in normal saline at $37^{\circ}C$ for 24 hours before test. Universal testing machine at a crosshead speed of 1mm/min was used to evaluate the shear bond strength. The data were statistically analyzed using one-way ANOVA(P<.01). Multiple comparison was done by the Tukey HSD test. The shear bond strength of Super-Bond C&B to e.max was significantly lower than those of Calibra, Variolink II(light-cure), Variolink II(dual-cure) (P<.01). The shear bond strength of Calibra, Variolink II(light-cure), Variolink II(dual-cure) to e.max were not significantly different. The shear bond strengths of light-cure/dual-cure cement were higher than that of self-cure cement.

Effect of tack cure time on polymerization shrinkage of dual-cure resin cement

  • Choi, Yoorina;Heo, Yu-Keong;Jung, Ji-Hye;Chang, Hoon-Sang
    • International Journal of Oral Biology
    • /
    • v.46 no.4
    • /
    • pp.184-189
    • /
    • 2021
  • When luting indirect restorations with dual-cure resin cement (DCRC), excess cement can be easily removed by performing tack cure of DCRC for a few seconds. The purpose of this study was to evaluate whether different tack cure times affect polymerization shrinkage (PS) of the selected DCRC. One dual-cure resin cement (G-CEM LinkAce, GC) was used for measuring PS in light-cure (LC group), self-cure (SC group), and two tack-cure modes. In the first tack-cure subgroup, tack cure was performed for 1, 2, 3, and 5 seconds, followed by light cure after 2 minutes of remnant removal time in each case (TC-LC groups). In the other tack-cure subgroup, tack cure was performed for the same lengths of time, but followed by self-cure in each case (TC-SC groups). PS was measured by a modified bonded disc method for 1,800 seconds. One-way analysis of variance followed by Duncan's post hoc test was used to determine any statistically significant differences among the test groups (α = 0.05). When the DCRC was self-cured after tack cure, PS was significantly lower than when it was only self-cured (p < 0.05); however, tack cure time did not affect PS (p > 0.05). When the DCRC was light-cured, PS was not affected by tack cure or tack cure time (p > 0.05). Therefore, tack cure within 5 seconds did not negatively affect the final PS when the DCRC was light-cured after cement remnant removal.

Cementation technique in indirect tooth colored restoration

  • Park, Sung-Ho
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.595-595
    • /
    • 2001
  • As the interest for esthetic restoration is increasing, the usage of composite resin is increasing. The usage of composite resin is not limited to anterior teeth but is spreading to posterior area using direct & indirect methods. Generally, dual or chemical cure resin cement has been used for setting composite or porcelain inlay restoration. However, chemical cure resin cement has limited working time and it's difficult to remove excess cement from the tooth and the restoration. The dual cured composite is also difficult to remove from the tooth surface.(omitted)

  • PDF

The effect of thickness and translucency of polymer-infiltrated ceramic-network material on degree of conversion of resin cements

  • Barutcigil, Kubilay;Buyukkaplan, Ulviye Sebnem
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • PURPOSE. The aim of the present study was to determine the degree of conversion of light- and dual-cured resin cements used in the cementation of all-ceramic restorations under different thicknesses of translucent (T) and high-translucent (HT) polymer-infiltrated ceramic-network (PICN) material. MATERIALS AND METHODS. T and HT PICN blocks were prepared at 0.5, 1.0, 1.5, and 2.0 mm thicknesses (n=80). Resin cement samples were prepared with a diameter of 6 mm and a thickness of 100 ㎛. Light-cured resin cement was polymerized for 30 seconds, and dual-cure resin cement was polymerized for 20 seconds (n=180). Fourier transform infrared spectroscopy (FTIR) was used for degree of conversion measurements. The obtained data were analyzed with ANOVA and Tukey HSD, and independent t-test. RESULTS. As a result of FTIR analysis, the degree of conversion of the light-cured resin cement prepared under 1.5- and 2.0-mm-thick T and HT ceramics was found to be lower than that of the control group. Regarding the degree of conversion of the dual-cured resin cement group, there was no significant difference from the control group. CONCLUSION. Within the limitation of present study, it can be concluded that using of dual cure resin cement can be suggested for cementation of PICN material, especially for thicknesses of 1.5 mm and above.

Effect of curing modes on micro-hardness of dual-cure resin cements (중합방법이 이중중합 레진시멘트의 미세경도에 미치는 영향)

  • Lee, Ki-Deok;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.132-138
    • /
    • 2011
  • Objectives: The purpose of this study was to evaluate curing degree of three dual-cure resin cements with the elapsed time in self-cure and dual-cure mode by means of the repeated measure of micro-hardness. Materials and Methods: Two dual-cure self-adhesive resin cements studied were Maxcem Elite (Kerr), Rely-X Unicem (3M ESPE) and one conventional dual-cure resin cement was Rely-X ARC resin cement (3M ESPE). Twenty specimens for each cements were made in Teflon mould and divided equally by self-cure and dual-cure mode and left in dark, $36^{\circ}C$, 100% relative humidity conditional-micro-hardness was measured at 10 min, 30 min, 1 hr, 3 hr, 6 hr, 12 hr and 24 hr after baseline. The results of micro-hardness value were statistically analyzed using independent samples t-test and one-way ANOVA with multiple comparisons using Scheffe's test. Results: The micro-hardness values were increased with time in every test groups. Dual-cure mode obtained higher micro-hardness value than self-cure mode except after one hour of Maxcem. Self-cured Rely-X Unicem showed lowest value and dual-cured Rely-X Unicem showed highest value in every measuring time. Conclusions: Sufficient light curing to dual-cure resin cements should provided for achieve maximum curing.

THERMAL ANALYSIS OF THE DUAL CURED RESIN CEMENTS ACCORDING TO CURING CONDITION (중합조건에 따른 dual cured resin cement의 열분석적 연구)

  • Lee, In-Bog;Chung, Kwan-Hee;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.265-285
    • /
    • 1999
  • The purposes of this investigation were to observe the reaction kinetics of five commercial dual cured resin cements (Bistite, Dual, Scotchbond, Duolink and Duo) when cured under varying thicknesses of porcelain inlays by chemical or light activation and to evaluate the effect of the porcelain disc on the rate of polymerization of dual cured resin cement during light exposure by using thermal analysis. Thermogravimetric analysis(TGA) was used to evaluate the weight change as a function of temperature during a thermal program from $25{\sim}800^{\circ}C$ at rate of $10^{\circ}C$/min and to measure inorganic filler weight %. Differential scanning calorimetry(DSC) was used to evaluate the heat of cure(${\Delta}H$), maximum rate of heat output and peak heat flow time in dual cured resin cement systems when the polymerization reaction occured by chemical cure only or by light exposure through 0mm, 1mm, 2mm and 4mm thickness of porcelain discs. In 4mm thickness of porcelain disc, the exposure time was varied from 40s to 60s to investigate the effect of the exposure time on polymerization reaction. To investigate the effect on the setting of dual cured resin cements of absorption of polymerizing light by porcelain materials used as inlays and onlays, the change of the intensity of the light attenuated by 1mm, 2mm and 4mm thickness of porcelain discs was measured using curing radiometer. The results were as follows 1. The heat of cure of resin cements was 34~60J/gm and significant differences were observed between brands (P<0.001). Inverse relationship was present between the heat of reaction and filler weight % the heat of cure decreased with increasing filler content (R=-0.967). The heat of reaction by light cure was greater than by chemical cure in Bistite, Scotchbond and Duolink(P<0.05), but there was no statistically significant difference in Dual and Duo(P>0.05). 2. The polymerization rate of chemical cure and light cure of five commercially available dual cured resin cements was found to vary greatly with brand. Setting time based on peak heat flow time was shortest in Duo during chemical cure, and shortest in Dual during light cure. Cure speed by light exposure was 5~20 times faster than by chemical cure in dual cured resin cements. The dual cured resin cements differed markedly in the ratio of light and chemical activated catalysts. 3. The peak heat flow time increased by 1.51, 1.87, and 3.24 times as light cure was done through 1mm, 2mm and 4mm thick porcelain discs. Exposure times recommended by the manufacturers were insufficient to compensate for the attenuation of light by the 4mm thick porcelain disc. 4. A strong inverse relationship was observed between peak heat flow and peak time in chemical cure(R=0.951), and a strong positive correlations hip was observed between peak heat flow and the heat of cure in light cure(R=0.928). There was no correlationship present between filler weight % or heat of cure and peak time. 5. The thermal decomposition of resin cements occured primarily between $300^{\circ}C$ and $480^{\circ}C$ with maximum decomposition rates at $335^{\circ}C$ and $440^{\circ}C$.

  • PDF

Effects of a relined fiberglass post with conventional and self-adhesive resin cement

  • Wilton Lima dos Santos Junior;Marina Rodrigues Santi;Rodrigo Barros Esteves Lins;Luis Roberto Marcondes Martins
    • Restorative Dentistry and Endodontics
    • /
    • v.49 no.2
    • /
    • pp.18.1-18.13
    • /
    • 2024
  • Objectives: This study was conducted to evaluate the mechanical properties of relined and non-relined fiberglass posts when cemented to root canal dentin using a conventional dual-cure resin cement or a self-adhesive resin cement. Materials and Methods: Two types of resin cements were utilized: conventional and self-adhesive. Additionally, 2 cementation protocols were employed, involving relined and non-relined fiberglass posts. In total, 72 bovine incisors were cemented and subjected to push-out bond strength testing (n = 10) followed by failure mode analysis. The cross-sectional microhardness (n = 5) was assessed along the root canal, and interface analyses (n = 3) were conducted using scanning electron microscopy (SEM). Data from the push-out bond strength and cross-sectional microhardness tests were analyzed via 3-way analysis of variance and the Bonferroni post-hoc test (α= 0.05). Results: For non-relined fiberglass posts, conventional resin cement exhibited higher pushout bond strength than self-adhesive cement. Relined fiberglass posts yielded comparable results between the resin cements. Type II failure was the most common failure mode for both resin cements, regardless of cementation protocol. The use of relined fiberglass posts improved the cross-sectional microhardness values for both cements. SEM images revealed voids and bubbles in the incisors with non-relined fiberglass posts. Conclusions: Mechanical properties were impacted by the cementation protocol. Relined fiberglass posts presented the highest push-out bond strength and cross-sectional microhardness values, regardless of the resin cement used (conventional dual-cure or self-adhesive). Conversely, for non-relined fiberglass posts, the conventional dual-cure resin cement yielded superior results to the self-adhesive resin cement.

Evaluation of mechanical properties of several dual-cure resin cements by curing modes (중합방법에 따른 여러 이중중합 레진 시멘트의 기계적 성질 평가)

  • Kim, Soo-Yeon;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Purpose: The purpose of this study was to evaluate the mechanical properties of several dual-cure cements by different curing modes. Materials and Methods: One resin-modified glass ionomer cement (FujiCEM 2), two conventional dual-cure resin cements (RelyX ARC, Multilink N), and two dual-cure self-adhesive resin cements (RelyX U200, G-CEM LinkAce) were used. To evaluate the influence of the curing methods, each cements divided into four conditions (n = 20); Condition 1: self-curing for 10 minutes, Condition 2: immediate after 20 seconds light-curing, Condition 3: 24 hours after self-curing, Condition 4: 24 hours after light-curing. The compressive strength and diametral tensile strength were measured with a universal testing machine. All data were statistically analyzed using t-test, one-way ANOVA and Scheffe's test. Results: The results showed the compressive strength and diametral tensile strength after 24 hours in all curing modes were higher than immediate except RelyX ARC light-cured and Multilink N light-cured. The FujiCEM 2 showed lowest values (P < 0.05). Conclusion: The outcome was cement-depend, but there is no significant difference about compressive strength and diametral tensile strength between dual-cure self-adhesive resin cements and conventional resin cements. And this result will be used as a base line data selecting resin cement for favorable long-term prognosis.

The effect of light sources and CAD/CAM monolithic blocks on degree of conversion of cement

  • Cetindemir, Aydan Boztuna;Sermet, Bulent;Ongul, Deger
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.291-299
    • /
    • 2018
  • PURPOSE. To assess the degree of conversion (DC) and light irradiance delivered to light-cured and dual-cured cements by application of different light sources through various types of monolithic computer-aided design and computer-aided manufacturing (CAD/CAM) materials. MATERIALS AND METHODS. RelyX Ultimate Clicker light-cured and dual-cured resin cement specimens with 1.5-mm thicknesses (n=300, 10/group), were placed under four types of crystalline core structure (Vita Enamic, Vita Suprinity, GC Ceresmart, Degudent Prettau Anterior). The specimens were irradiated for 40 seconds with an LED Soft-Start or pulse-delay unit or 20 seconds with a QTH unit. DC ratios were determined by using Fourier transform infrared spectroscopy (FTIR) after curing the specimen at 1 day and 1 month. The data were analyzed using the Mann-Whitney U test (for paired comparison) and the Kruskal-Wallis H test (for multiple comparison), with a significance level of P<.05. RESULTS. DC values were the highest for RelyX Ultimate Clicker light-cure specimens polymerized with the LED Soft-Start unit. The combination of the Vita Suprinity disc and RelyX Ultimate Clicker dual-cure resin cement yielded significantly higher values at both timepoints with all light units (all, P<.05). CONCLUSION. Within the limitations of this study, we conclude that the DC of RelyX Ultimate Clicker dual-cure resin cement was improved significantly by the use of Vita Suprinity and the LED Soft-Start light unit. We strongly recommend the combined use of an LED light unit and dual-cure luting cement for monolithic ceramic restorations.