• Title/Summary/Keyword: drying strain

Search Result 130, Processing Time 0.026 seconds

Design and Evaluation of a Microcomputer-based Vacuum Drying System for Shiitake Mushrooms (마이크로컴퓨터 시스템을 이용한 표고버섯의 감압건조에 대한 연구)

  • Choi, Jae-Yong;Kim, Kong-Hwan;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.550-555
    • /
    • 1987
  • Strain gauges attached on the Bourdon tube and load cell were used as the sensors for measuring the vacuum pressure in drying chamber and the weight loss of Shiitake mushrooms respectively. The vacuum drying system was interfaced further with the Bear II microcomputer. The interface devices used were built with such IC chips as MC 6821, ADC 0809, SN 74244 and SN 7424. The relationship between readings of vacuum gauge (P, mmHg) and digital outputs (D) from the microcomputer was represented by P =3.08 D-13.4875(r=0.9999). The weights of drying sample (W) were also related with the digital outputs (D) by W=0.4076 D-6.4762 (r=0.9999). During the vacuum drying of Shiitake mushrooms. the data on pressure and weight were recorded at regular intervals using an acquisition program on the microcomputer system. The Page model was fitted well to the drying data of Shiitake mushrooms. resulting in the following empirical equations : $(M-M_e)/(M_o-M_e)=\exp(-0.1569t^{1.0048})$ at 400 mm Hg up to 14 hours and $(M-M_e)/(M_o-M_e)=\exp(-0.1385_t^{1.2688})$ at 600 mm Hg up to 8 hours.

  • PDF

Prediction of Differential Drying Shrinkage in Concrete (콘크리트의 부등건조수축에 관한 연구)

  • 김진근;이칠성
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.153-161
    • /
    • 1997
  • In the concrete st~uctures exposed to the environmental condition, the water movement is occurred by thc moisture difilsion, and the rnoisturrt distribution in concwt.c is nonunifhrm. Such a non-unif'orm moisture distribution causes tht. diflbrent.ia1 drying shrinkage in concrete structures. From this typc. of' dif'fercntial drying shrinkagr' tensiit-1 stress is occurred in exposure surface of concrete structures. and may result in crack formation. This residual stress is significantly affected by the creep of concrete, and the differential creep is also occurred at the cross section of concrete structures due to moisture difference at each locations. In this study, based on the moisture diffusion theory, a finite element program which is capable of simulating the moisture distribution in concrete was developed. And the analysis method for the differential drying shrinkage was suggested, in which the differential creep was considered. The differential drying shrinkage strain was also measured at various positions of concrete. Finally the validity of analysis method was proved by comparing test results with analytical results.

Properties of CLC using Silica to Suppress Cracking due to Drying Shrinkage (건조수축에 따른 균열 억제를 위한 규사 혼입 CLC의 특성)

  • Lee, Chang-Woo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.125-126
    • /
    • 2021
  • In order to improve the housing culture, construction changes for the utilization of diverse and multifunctional spaces are appearing in response to the increasing diverse needs of consumers. Cellular Light-weight Concrete (CLC) is being developed for use in fire-resistant heat-insulating walls and non-bearing walls. However, manufacturing non-uniformity has become a problem as a drawback due to the use of foamed bubbles and normal temperature curing, and additional research is required. Therefore, in order to suppress cracks due to drying shrinkage, silica sand is mixed with CLC to try to understand its characteristics. In the experiment, the compressive strength from 7 to 28 days of age was measured via a constant temperature and humidity chamber, and the drying shrinkage was analyzed according to each condition using a strain gauge. The compressive strength of matrix tends to decrease as the substitution rate of silica sand increases. This is judged by the result derived from the fact that the specific surface area of silica sand is smaller than that of slag. Based on KS F 2701 (ALC block), the compressive strength of 0.6 products is 4.9 MPa or more as a guide, so the maximum replacement rate of silica sand that satisfies this can be seen at 60%. Looking at the change in drying shrinkage for just 7 days, the shrinkage due to temperature change and drying is 0.7 mm, and the possibility of cracking due to shrinkage can be seen, and it seems that continuous improvement and supplementation are needed in the future.

  • PDF

Soil Properties in Relation to Elastic Wave (탄성파를 이용한 흙의 특성연구)

  • 조계춘;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.83-101
    • /
    • 2002
  • Elastic waves provide an important information about the soil mass in the near-surface. Soil properties in relation to elastic wave parameters are clarified to facilitate the application of geophysical technique to soil characterization. As an example, experiments are performed to gain further insight into the behavior of unsaturated particulate materials using bender elements. The small strain stiffness is continuously measured on specimens subjected to drying, and changes in stiffness are related to changes in interparticle forces such as capillarity, bonding due to ion sharing, buttress effect due to fine migration, and cementation due to salt precipitation. The rate of menisci regeneration is studied after a perturbation as well. Finally, several phenomena associated with the evolution of capillary forces during drying are identified.

Multi-physics Modelling of Moisture Related Shrinkage in Concrete (콘크리트 수분관련 수축에 관한 다중물리모델)

  • Lee, Chang-Soo;Park, Jong-Hyok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • Water binder ratio combine high-performance concrete shrinkage of less than 0.4 to determine the transformation to a total shrinkage of water to move outside and internal consumption of moisture due to drying shrinkage and autogenous shrinkage, and then, the relative humidity changes and strain to be approached by surface physics describe the relationship between self-desiccation and autogenous shrinkage was set. To verify the self-desiccation in the humidity shrinkage and humidity measurements performed, and the research model, Tazawa, CEB-FIP model than to let the measure and the most similar results in this study based on self-desiccation model, autogenous shrinkage didn't represent the linear shrinkage by the drying shrinkage of the external moving but exponential relationships, unlike with the nature and rapid in the early age properly describes the attributes in shrinkage could see. After this research to move moisture and to reflect the shrinkage model, temperature, moisture transfer, strain analysis by multi-physics model is very similar to the results of mock-up specimen measurements performed for this research, the value measured by the internal consumption of moisture, therefore self-desiccation and a multi-physics model considering autogenous shrinkage might be relevant.

Performance Evaluation of Electro-Active Paper Based on Aligned Cellulose (배향된 셀룰로오스에 기초한 Electro-Active Paper의 성능평가)

  • Yun, Gyu-Young;Kim, Jung-Hwan;Kim, Heung-Soo;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.934-937
    • /
    • 2007
  • This study focused on investigating the effect of aligned cellulose fibers to the performance of EAPap actuator. The performance of EAPap is dependant on the material direction of cellulose film. Electrospinning was used to improve material directionality of EAPap. DMAc cellulose solution which cotton pulp was resolved in DMAc solvent was used for electrospinning cellulose film. To increase directionality of nano fibers, the Electrospun film was stretched by 10 % strain during drying process. Induced in-plane strain of Electrospun EAPap was proportional to the applied voltage and larger than that of spincast EAPap. It is concluded that the performance of EAPap was improved by aligning cellulose fibers.

  • PDF

Influence of flexural loading on chloride ingress in concrete subjected to cyclic drying-wetting condition

  • Ye, Hailong;Fu, Chuanqing;Jin, Nanguo;Jin, Xianyu
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.183-198
    • /
    • 2015
  • Chloride ingress implies a complex interaction between physical and chemical process, in which heat, moisture and chloride ions transport through concrete cover. Meanwhile, reinforced concrete structure itself undergoes evolution due to variation in temperature, relative humidity and creep effects, which can potentially change the deformation and trigger some micro-cracks in concrete. In addition, all of these process show time-dependent performance with complex interaction between structures and environments. In the present work, a time-dependent behavior of chloride transport in reinforced concrete beam subjected to flexural load is proposed based on the well-known section fiber model. The strain state varies because of stress redistribution caused by the interaction between environment and structure, mainly dominated by thermal stresses and shrinkage stress and creep. Finally, in order to clear the influence of strain state on the chloride diffusivity, experiment test were carried out and a power function used to describe this influence is proposed.

Quantitative Estimation of Joint Spacing for Concrete Slab to Prevent Cracking of Drying Shrinkage (건조수축에 따른 균열 방지를 위한 콘크리트 슬래브의 정량적 줄눈 간격 산정)

  • Lee, Su-Jin;Lee, Hoi-Keun;Lee, Seung-Hoon;Won, Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.289-294
    • /
    • 2011
  • The installation of joint is to prevent random cracking due to drying shrinkage stress of concrete slab. However contraction joint spacing is empirically implemented into slab constructions without detail calculation based on quantitative criteria. In this study, shrinkage strain of concrete due to concrete shrinkage stress was measured to suggest joint spacing based on the study results. The test environmental conditions were applied temperature of $15^{\circ}C$ and relative humidity of 60%. The design compressive strength used was 30 MPa and 40 MPa, which are currently used in concrete slab designs. The drying shrinkage test result was applied to drying shrinkage models (ACI 209R, CEB MC 90, B3, GL 2000 and Sakata). The results showed that the most appropriate model was ACI 209R model. Based on the research findings, quantitative contraction joint spacing locations were calculated.

Incremental Model Formulation of Creep under Time-varying Stress History (시간이력 하중을 받는 콘크리트의 점증적 크리프 모델)

  • Park, Yeong-Seong;Shin, Dong-Hun;Lee, Yong-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.755-761
    • /
    • 2014
  • Internal or external restraint of concrete strain due to drying shrinkage and creep in concrete structures causes mechanical strain and becomes a source of persistent change in creep-causing stress conditions. Mathematical modeling to incorporate the persistent change of creep-inducing stress is generally achieved with consideration of the ages of concrete and concrete properties at the times of loadings, and stress history. This paper presents an incremental format of creep model based on parallel creep concept to depict the creep under time-varying stress history in developing creep strain. Laboratory experiments are carried out to validate the performance of the presented creep model. Typical creep phenomena are addressed through the comparisons between the measured and predicted creep strains.

Fabrication and Characterization of Zirconia Thermal Barrier Coatings by Spray Drying and Atmospheric Plasma Spraying (분무건조 및 대기 플라즈마 용사에 의한 지르코니아 열차폐 코팅재의 제조 및 평가)

  • Kim, Chul;Heo, Yong Suk;Kim, Tae Woo;Lee, Kee Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.5
    • /
    • pp.326-332
    • /
    • 2013
  • In this study, we prepared yttria stabilized zirconia granules for thermal barrier coatings using a spray drying process. First, we characterized the properties of granules such as flow rate and packing density for utilizing the air plasma spray process. The flow rate and packing density data showed 0.732 g/sec and 2.14 $g/cm^3$, respectively, when we used larger and denser particles, which are better than hollow granules or smaller spherical granules. Second, we chose larger, spherical granules fabricated in alcohol solvent as starting powders and sprayed it on the bondcoat/nimonic alloy by an atmospheric plasma spray process varying the process parameters, the feeding rate, gun speed and spray distance. Finally, we evaluated representative thermal and mechanical characteristics. The thermal expansion coefficients of the coatings were $11{\sim}12.7{\times}10^{-6}/^{\circ}C$ and the indentation stress measured was 2.5 GPa at 0.15 of indentation strain.