• Title/Summary/Keyword: drying energy

Search Result 538, Processing Time 0.026 seconds

Optimum Drying Conditions of On-Farm Red Pepper Dryer (고추건조기의 최적운전조건)

  • Lee, Dong-Sun;Keum, Dong-Hyuk;Park, Noh-Hyun;Park, Mu-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.676-685
    • /
    • 1989
  • Optimal operating conditions of on-farm red pepper dryer were searched by using the simulation-optimization algorithm combining the drying and quality deterioration models of red pepper with Box's complex method. Determination of control variables such as air temperature, air recycle ratio and air flow rate was based on a criterion of minimizing energy consumption under the constrainst conditions that satisfied the specified color retention of carotenoids. As quality constraint was stricter, energy consumption increased and total drying time decreased with lower recycle ratio and higher air flow rate Product mixing during drying was found to be able to improve the energy efficiency and product quality. Currently used air flow rate was assessed to be increased for the optimal operation. Two stage drying at the fixed optimal air flow rate was proven to be useful means for further saying of energy consumption. In the optimal bistaged drying, the second stage began at about one third of the total drying time and low air temperature in the first stage Increased to a high value and air recycle ratio increased slightly in the second stage. Optimal control variable scheme could be explained by the dryer performance and the carotenoids destruction kinetics in red pepper drying.

  • PDF

Circulating Concurrent-flow Drying Simulation of Rapeseed (순환식 병류형 유채씨 건조 시뮬레이션)

  • Han, Jae-Woong;Keum, Dong-Hyuk;Kim, Woong;Duc, Le Anh;Cho, Sung-Ho;Kim, Hoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.401-407
    • /
    • 2010
  • In this study, computer simulations were conducted to assess the use of a circulating concurrent-flow dryer for rapeseed drying and to determined the effect of this drying method on the germination ratio of rapeseed after the drying process was complete. The simultaneous heat and mass transfer between air and rapeseed in a concurrent-flow dryer was examined by simulation. The drying simulation was based on several parameters with sequent time series. Equations concerning air psychrometrics, physical properties, thermal properties, equilibrium moisture content, thin layer drying of rapeseed, etc. were all combined to solve the simulation models. Based on energy and mass transfer in the concurrent-flow drying model, a simulation program for the circulating concurrent-flow rapeseed dryer was built along with a detailed description of the mathematical solution to the model. A pilot scale circulating concurrent-flow dryer(200 kg/batch) was used to verify the fitness of the simulation program. A comparison between the experimental data and the model predicted results was presented and discussed. The drying parameters and germination ratio were analyzed and the accuracy of the simulation program was evaluated. The simulation program proved to be reliable and was shown to be a convenient tool for predicting rapeseed drying and germination ratio of rapeseed in a concurrent-flow dryer.

Nutritional Value and Digestibility of Tenebrio molitor As a Feed Ingredient for Rockfish (Sebastes schlegeli) (조피볼락의 사료원으로 갈색거저리의 영양적 가치 및 소화율 평가)

  • JANG, Tae-Ho;JUNG, Sung-Mok;KIM, Esther;LEE, Yong-Seok;LEE, Sang-Min
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.888-898
    • /
    • 2017
  • Tenebrio molitor larvae, also known as yellow mealworms (MW), are rich in protein and lipid and can serve as a potential alternative protein and energy source in commercial aquafeeds. Therefore, this study attempts to evaluate the effects of different drying methods on the nutritional value of MW meal. For this, live MW were cold-anaesthetized before being subjected to three different types of drying methods, including freeze-drying, oven-drying at $60^{\circ}C$ and air-drying at room temperature for three days, and compared for proximate composition and energy content. An in-vivo digestibility test was then conducted to evaluate the nutrient digestibility of MW meal in diets for rockfish, Sebastes schlegeli. A test diet was prepared by mixing the MW meal with a reference diet (Ref) in a 30:70 ratio with chromium oxide as an inert marker at the inclusion level of 0.5%. Rockfish with mean body weight of 150 g were stocked into a fecal collection system equipped with fiberglass tanks of 400 L capacity. Each group of fish was fed one of the experimental diets to apparent satiation for 4 weeks. The results of the proximate analysis showed that drying methods had no significant effect on crude protein, crude lipid, ash and energy contents of MW. Despite being a rich source of protein and lipid, MW meal was deficient in certain amino acids, particularly methionine, and highly unsaturated fatty acids, particularly 22:6n-3 (DHA) and 20:5n-3 (EPA). MW meal showed high digestibility values for protein (93%), lipid (97%) and energy (88%). These results may indicate that MW meal is a nutritious and acceptable feed ingredient, with comparable digestibility values to conventional animal and plant feedstuffs such as fish meal and soybean meal, in practical diet for rockfish at grower stage.

Performance Evaluation of Rough Rice Low Temperature Drying Using Heat Pump (열펌프를 이용한 벼의 저온건조성능평가)

  • Kim, Hoon;Han, Jae-Woong
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.308-313
    • /
    • 2009
  • This study was conducted to design and fabricate a heat pump that can produce some weather conditions similar to those of the dry season of the rough rice in Korea, and to investigate basic performances of the apparatus. During the drying test, the amount of energy consumption and drying characteristics were measured at four different temperature levels ranging between 20$^{\circ}C$ and 50${^{\circ}C}$. In the psychrometric chart, the freezing capacity and refrigerant circulation ratio of the heat pump were 173 kJ/kg and 49.6 kg/hr, respectively. Therefore, coefficient of performance was 5.5, which was superior to that of refrigerant R-22 (4.0) in standard refrigeration cycle. In addition, the time to reach target drying temperature (30${^{\circ}C}$) and relative humidity (40%) were 6 minutes and 7 minutes, respectively. Temperature differences between the drying temperature and the rice were 1.5${^{\circ}C}$ and 8.5${^{\circ}C}$ at the drying temperatures of 21.9${^{\circ}C}$ and 48.7${^{\circ}C}$, respectively. This result demonstrated that the increased temperature of the rice in the drying section decreased sufficiently in the tempering section. At the drying temperatures of 21.9, 30.7 38.8, and 48.7${^{\circ}C}$, drying rates were 0.29, 0.61, 0.85, and 1.26%/hr, respectively, which were similar to those of commercial dryer. In addition, the amounts of energy consumption were 325, 667, 692, and 776 kJ/kg, respectively. These results showed that this dryer saved up to 86% of energy consumption compared with the commercial dryer, which uses 4,000-5,000 kJ/kg of fossil fuel.

Fixed Bed Drying of Sugarcane Bagasse Using Solar Energy

  • Hyoung-Woo LEE;Hyun-Ook KIM;Dong-Hoon LEE;Don-Ha CHOI;Seung-Gyu KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Solar energy is one of the most promising options for renewable energy and biomass is one of them. One of the main biomass sources, sugarcane bagasse, is produced annually in more than hundreds of nations worldwide exceeding 4.25 billion tons. To dry a 900-mm deep fixed bed of wet sugarcane bagasse, a solar air heater with a collector area of 2 m2 was installed. Between October 10th to 19th in Gwangju, South Korea, a 9-day drying period, the solar collector received a total of 496,145 kJ of solar radiation. During this time, 54.5 kg of water was extracted from 133 kg of wet sugarcane bagasse (average green moisture content of 47.6%w.b.). The estimated net heat from the evaporation of water removed during the dying period accounted for approximately 27% of the total solar radiation on the solar collector.

[ $Papridry^{TM}$ ], A New Technique for Drying of Paper and Board

  • Pikulik, I.I.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.19-29
    • /
    • 2006
  • Drying is the least developed of all unit operations of paper and board manufacture. While groundbreaking developments were Introduced during the several past decades in forming, pressing and calendering, no radical changes occurred in drying. The cylinder-drying technology is now more than 200 years old and, while it was subject to many incremental improvements, many of its inherent problems persist. We believe that conventional drying is now approaching the end of its life and the industry is ready for a major breakthrough in drying. Indeed several innovative technologies already exist at various stages of development or commercialization. In general, the novel drying technologies are striving to increase the drying rate, improve the product quality and boost the energy efficiency of drying. A novel, drying method, $Papridry^{TM}$, which combines conductive and convective heat transfer to obtain very high drying rates, is at an advanced stage of development at Paprican. The results obtained when drying printing paper ana board on a self-standing pilot $Papridry^{TM}$ machine and on the pilot paper machine equipped with a tandem of two $Papridry^{TM}$ units demonstrate both, the high drying rate and improved product quality achieved by using this drying method. A mathematical model of this operation has been developed and the software compiled with this model was used to calculate the effect of installing a $Papridry^{TM}$ unit into an existing dryer section. The model also allows to calculate the z-direction distribution of moisture and temperature at various points of the dryer section.

  • PDF

The Evaluation of the Application of Modified Wood Powder Spacers to Liner Board Mill Trials (개질처리된 목질계 스페이서의 산업용지 생산현장 적용평가)

  • Seo, Yung Bum;Yoon, Doh-Hyun;Sung, Yong Joo;Gwon, Wan-Oh;Kim, Jin-doo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.98-103
    • /
    • 2015
  • The reduction of the energy consumption in papermaking process become more important issue because of the regulation of green house gas (GHG) emission. Since more than half of energy for papermaking process is consumed during drying process, the increase of the drying efficiency would be very important solution for saving energy and reduction of GHG emission. The improvement of drying efficiency could be very difficult for the liner board mill because the liner board are usually made of recycled paper, OCC (old corrugated container). The short fiber and fines originated the OCC lead to compact sheet structure and delay the water flow out during wet pressing process and drying process. The application of lignocellulose spacer could provide more loose wet sheet structure and result in the higher drainage rate and the improved drying efficiency. In this study, the effects of the application of lignocellulose spacer to the liner board mill were evaluated based on the mill trial. In order to overcome the common disadvantage of the spacer, the loss of strength properties, the spacer was pretreated with amphoteric polyelectrolyte during mill trial. The results showed the application of pretreated spacer improved the drying efficiency by reducing steam consumption. And the loss in the strength properties by the spacer could be supplemented by the pretreatment.

Infrared Assisted Freeze-Drying (IRAFD) to Produce Shelf-Stable Insect Food from Protaetia brevitarsis (White-Spotted Flower Chafer) Larva

  • Khampakool, Apinya;Soisungwan, Salinee;You, SangGuan;Park, Sung Hee
    • Food Science of Animal Resources
    • /
    • v.40 no.5
    • /
    • pp.813-830
    • /
    • 2020
  • In this study, the potential of infrared assisted freeze-drying (IRAFD) was tested for the production of shelf-stable edible insects: Protaetia brevitarsis larva (larva of white-spotted flower chafer). The IRAFD system was customized using an infrared lamp, K-type thermocouple, controller, and data acquisition system. The infrared lamp provided the sublimation energy for rapid freeze-drying (FD). The IRAFD conditions were continuous IRAFD-5.0 kW/㎡ and IRAFD-5.0 kW/㎡ at different weight reduction (WR) (10%, 20%, and 30%). The continuous IRAFD reduced the drying time to 247 min compared to the 2,833 min duration of FD (p<0.05). The electrical energy could be reduced by more than 90% through infrared radiation during FD (p<0.05). The Page model resulted in the best prediction among the tested drying kinetic models. In terms of quality, IRAFD showed significantly lower hardness, chewiness, and higher protein levels than hot air drying and FD (p<0.05). IRAFD better preserved the glutamic acid (6.30-7.29 g/100 g) and proline (3.84-5.54 g/100 g). The external product appearance after IRAFD exhibited more air pockets and volume expansion, which might result in a good consumer appeal. In conclusion, this study reports the potential of IRAFD in producing shelf-stable and value-added edible insects.

Effect of Precipitated Calcium Carbonate on Paper Properties and Drying Energy Reduction of Duplex-board (원료 및 건조에너지 절감을 위한 경질탄산칼슘의 백판지 공정 적용성 평가)

  • Lee, Ji-Young;Kim, Young-Hun;Lee, Se-Ran;Kim, Chul-Hwan;Sung, Yong Joo;Lim, Gi-Baek;Kim, Sun-Young;Kim, Jun-Sik;Park, Jong-Hea
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.6
    • /
    • pp.24-29
    • /
    • 2013
  • In this study, we investigated the applicability of PCC(precipitated calcium carbonate) as a raw material for the manufacture of duplex-board. Papers were made with white-ledger stock collected from the actual duplex-board mill and PCC in a laboratory, and paper properties including bulk, ash content, tensile strength, burst strength, brightness and opacity were measured. The effect of PCC on the drying energy of duplex-board was also determined by measuring the moisture content of wet web and calculating drying energy reduction. PCC increased bulk and ISO brightness significantly, which means PCC can decrease the use of virgin pulp and recycled fibers. PCC decreased the moisture content of wet web, which means PCC can decrease drying energy consumption. However, paper strength decreased as addition levels of PCC addition increased. Therefore, the addition level of PCC must be determined considering the reduction of paper strengths.