• 제목/요약/키워드: dry press

검색결과 250건 처리시간 0.024초

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.

건식벽체에서 접착제 종류에 따른 타일부착 안전성 평가에 관한 연구 (A Study of the appraisal for adhesive stability classified by tile bond agent on the dry wall surface)

  • 엄찬용;선윤숙;권시원;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.173-178
    • /
    • 2005
  • The tile construction methods for existing have been used materials within limit which adhesion by wet method in masonry wall and concrete structure. These existing adhesive tech can caused many problems in construction of large and reform tile, after that it can be happened loose scale, peel off, falling off tile by heat and vibration or impact. In according to, this study is to test tile for bond stability, adhesive property by impact, vibration. low property by heat and then, we have the results as below; (1) The tile adhesive stability can be effected as adhesive area between bond agent and tile, adhesive area can more wide and press enough to ensure property. (2) Existing adhesive strength and standard relative tile construction is limited to adjust performance tile on the concrete and masonry wall. In summary, It is necessary to establish standard of performance and test method to ensure tile adhesive salability in dry wall.

  • PDF

Frictional behaviour of epoxy reinforced copper wires composites

  • Ahmed, Rehab I.;Moustafa, Moustafa M.;Talaat, Ashraf M.;Ali, Waheed Y.
    • Advances in materials Research
    • /
    • 제4권3호
    • /
    • pp.165-178
    • /
    • 2015
  • Friction coefficient of epoxy metal matrix composites were investigated. The main objective was to increase the friction coefficient through rubber sole sliding against the epoxy floor coating providing appropriate level of resistance. This was to avoid the excessive movement and slip accidents. Epoxy metal matrix composites were reinforced by different copper wire diameters. The epoxy metal matrix composites were experimentally conducted at different conditions namely dry, water and detergent wetted sliding, were the friction coefficient increased as the number of wires increased. When the wires were closer to the sliding surface, the friction coefficient was found to increase. The friction coefficient was found to increase with the increase of the copper wire diameter in epoxy metal matrix composites. This behavior was attributed to the fact that as the diameter and the number of wires increased, the intensity of the electric field, generated from electric static charge increased causing an adhesion increase between the two sliding surfaces. At water wetted sliding conditions, the effect of changing number of wires on friction coefficient was less than the effect of wire diameter. The presence of water and detergent on the sliding surfaces decreased friction coefficient compared to the dry sliding. When the surfaces were detergent wetted, the friction coefficient values were found to be lower than that observed when sliding in water or dry condition.

Ballasting plan optimization for operation of a 2D floating dry dock

  • Yoon, Kyungho;Kim, Hyo-Jin;Yeo, Seungkyun;Hong, Younghwa;Cha, Jihye;Chung, Hyun
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.521-532
    • /
    • 2020
  • A floating dry dock is an advanced structure that can provide a solution for dry dock space shortages. The critical point in floating dock operation is compensating the deflection caused by a heavy payload by adjusting the water level in the ballast system. An appropriate ballasting plan warrants safe and precise construction on a floating dock. Particularly, in the case of a 2D floating dock, ballasting plan evaluation is crucial due to complex deformation modes. In this paper, we developed a method to calculate the optimal ballasting plan for accurate and precise construction on a 2D floating dock. The finite element method was used for considering the flexibility of the floating dock as well as the construction blocks. Through a gradient-based optimization algorithm, the optimal ballasting plan for the given load condition was calculated in semi-real time (5 min). The present method was successfully used for the actual construction of an offshore structure on the 2D floating dock.

Incorporating magneto-Rheological damper into riser tensioner system to restrict riser stroke in moderate-size semisubmersibles

  • Zainuddin, Zaid;Kim, Moo-Hyun;Kang, Heon-Yong;Bhat, Shankar
    • Ocean Systems Engineering
    • /
    • 제8권2호
    • /
    • pp.101-118
    • /
    • 2018
  • In case of conventional shallow-draft semisubmersibles, unacceptably large riser stroke was the restricting factor for dry-tree-riser-semisubmersible development. Many attempts to address this issue have focused on using larger draft and size with extra heave-damping plates, which results in a huge cost increase. The objective of this paper is to investigate an alternative solution by improving riser systems through the implementation of a magneto-rheological damper (MR Damper) so that it can be used with moderate-size/draft semisubmersibles. In this regard, MR-damper riser systems and connections are numerically modeled so that they can couple with hull-mooring time-domain simulations. The simulation results show that the moderate-size semisubmersible with MR damper system can be used with conventional dry-tree pneumatic tensioners by effectively reducing stroke-distance even in the most severe (1000-yr) storm environments. Furthermore, the damping level of the MR damper can be controlled to best fit target cases by changing input electric currents. The reduction in stroke allows smaller topside deck spacing, which in turn leads to smaller deck and hull. As the penalty of reducing riser stroke by MR damper, the force on the MR-damper can significantly be increased, which requires applying optimal electric currents.

Structural modeling of actuation of IPMC in dry environment: effect of water content and activity

  • Swarrup, J. Sakthi;Ranjan, Ganguli;Giridhar, Madras
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.553-565
    • /
    • 2017
  • Structural modeling of unencapsulated ionic polymer metal composite (u-IPMC) actuators that are used for flapping the insect scale-flapping wing of micro air vehicles (FMAV) in dry environmental conditions is carried out. Structural modeling for optimization of design parameters for retention of water, maximize actuation performance and to study the influence of water activity on the actuation characteristics of u-IPMC is explored for use in FMAV. The influence of equivalent weight of Nafion polymer, cations, concentration of cations, pre-treatment procedures on retention of water of u-IPMCs and on actuation parameters, flapping angle, flexural stiffness and actuation displacement are investigated. IPMC designed with Nafion having equivalent weight 900-1100, pre-heated at $30^{\circ}C$ and with sodium as the cations is promising for optimum retention of water and actuation performance. The actuation parameters while in operation in dry and humid environment with varying water activity can be tuned to desirable frequency, deflection, flap angle and flexural stiffness by changing the water activity and operational temperature of the environment.

P-value significance level test for high-performance steel fiber concrete (HPSFC)

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin;Marar, Khaled
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.485-493
    • /
    • 2018
  • Statistical analysis has found useful application in the design of experiments (DOE) especially optimization of concrete ingredients however, to be able to apply the concept properly using computer aided applications there has to be an upper and lower limits of responses fed to the system. In this study, the production of high-performance steel fiber concrete (HPSFC) at five different fiber addition levels by volume with two aspect ratios of 60 and 83 were studied under two curing methods completely dry cured (DC) and moist cured (MC) conditions. In other words, this study was carried out for those limits based on material properties available in North Cyprus. Specimens utilized were cubes 100 mm size casted and cured for 28 days and tested for compressive strength. Minitab 18 statistical software was utilized for the analysis of results at a 5 per cent level of significance. Experimentally, it was observed that, there was fluctuation in compressive strength results for the two aspect ratios and curing regimes. On the other hand P-value hypothesis evaluation of the response showed that at the stated level of significance, there was a statistically significant difference between dry and moist curing conditions. Upper and lower limit values were proposed for the response to be utilized in DOE for future studies based on these material properties. It was also suggested that for a narrow confidence interval and accuracy of the system, future study should increase the sample size.

Experimental study on the tensile strength of gravelly soil with different gravel content

  • Ji, Enyue;Chen, Shengshui;Zhu, Jungao;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.271-278
    • /
    • 2019
  • In recent years, the crack accidents of earth and rockfill dams occur frequently. It is urgent to study the tensile strength and tensile failure mechanism of the gravelly soil in the core for the anti-crack design of the actual high earth core rockfill dam. Based on the self-developed uniaxial tensile test device, a series of uniaxial tensile test was carried out on gravelly soil with different gravel content. The compaction test shows a good linear relationship between the optimum water content and gravel content, and the relation curve of optimum water content versus maximum dry density can be fitting by two times polynomial. For the gravelly soil under its optimum water content and maximum dry density, as the gravel content increased from 0% to 50%, the tensile strength of specimens decreased from 122.6 kPa to 49.8 kPa linearly. The peak tensile strain and ultimate tensile strain all decrease with the increase of the gravel content. From the analysis of fracture energy, it is proved that the tensile capacity of gravelly soil decreases slightly with the increasing gravel content. In the case that the sample under the maximum dry density and the water content higher than the optimum water content, the comprehensive tensile capacity of the sample is the strongest. The relevant test results can provide support for the anti-crack design of the high earth core rockfill dam.

An assessment of the mechanical behavior of zeolite tuff used in permeable reactive barriers

  • Cevikbilen, Gokhan
    • Geomechanics and Engineering
    • /
    • 제31권3호
    • /
    • pp.305-318
    • /
    • 2022
  • Permeable reactive barriers used for groundwater treatment require proper estimation of the reactive material behavior regarding the emplacement method. This study evaluates the dry emplacement of zeolite (clinoptilolite) to be used as a reactive material in the barrier by carrying out several geotechnical laboratory tests. Dry zeolite samples, exhibited higher wetting-induced compression strains at the higher vertical stresses, up to 12% at 400 kN/m2. The swelling potential was observed to be limited with a 3.5 swell index and less than 1% free swelling strain. Direct shear tests revealed that inundation reduces the shear strength of a dry zeolite column by a maximum of 10%. Falling head permeability tests indicate decreasing permeability values with increasing the vertical effective stress. Regarding self-loading and inundation, the porosity along the zeolite column was calculated using a proposed 1D numerical model to predict the permeability with depth considering the laboratory tests. The calculated discharge efficiency was significantly decreased with depth and less than 2% relative to the top for barrier depths deeper than 20 m. Finally, the importance of directional dependence in the permeability of the zeolite medium for calibrating 2D finite element flow analysis was highlighted by bench-scale tests performed under 2D flow conditions.

접착제(接着劑)로서 크라프트 리그닌 폐액(廢液)의 이용(利用) (Utilization of Kraft Black Liquor as Resin Binders)

  • 박광만;백기현
    • Journal of the Korean Wood Science and Technology
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 1987
  • 소나무 크라프트 펄프제조과정중 회수된 폐액으로 Black liquor-phenol formaldehyde. Methylolated kraft lignin-phenol formaldehyde 및 Lignin cake-phenol rein 세 종류의 접착제가 제조되었다. Black liquor-phenol formaldehyde resin 제조시 Phenol의 약 60%를 크라프트 폐액으로 대치할 수 있다. 본 접착제의 최적압착조건은 $160^{\circ}C$에서 7분간이였다.(상태접착력 : 15.77kg/$cm^2$ 내수접착력 : 8.54kg/$cm^2$). Methylolated kraft lignin-pheno] formaldehyde resin 제조시 Phenol의 약 80~90%를 Methylolated kraft lignin으로 대용할 수 있었다. 본 접착제 제조시 pH를 2.6 용매로서 Methanol, 접착제 1g 당 $0.2m\ell$ Formaldehyde를 첨가하는 것이 접착력이 가장 높았다(상대접착력 : 18.54kg/$cm^2$, 내수 접착력 : 10.08kg/$cm^2$. Lignin cake-phenol ressin에서 Phenol양과 Kraft lignin양이 1 : 1일 경우에 접착력이 높았다. 본 접착제의 최적 압착조건은 $150^{\circ}C$에서 4분간이었다.(상태 접착력 : 18.46kg/$cm^2$, 내수접착력 : 12.3kg/$cm^2$).

  • PDF