• Title/Summary/Keyword: dry friction

Search Result 352, Processing Time 0.059 seconds

FRICTION CHARACTERISTICS OF A PAPER-BASED FRICTION MATERIAL

  • Gao, H.;Barber, G.-C.;Chu, H.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.171-176
    • /
    • 2002
  • A bench test set-up is employed to simulate the friction characteristics of a paper-based friction material operating against a steel plate. Dry friction tests are run as well as tests with transmission fluids. Glazed friction material produces a negative coefficient of friction versus sliding velocity (f-v) curve for both dry friction and lubrication with transmission fluids. At low sliding speeds, the coefficient of friction when operating in transmission fluids for glazed friction materials is greater than that under dry friction. An appreciable negative f-v slope occurs at low sliding speeds for glazed friction materials when running with the transmission fluid. The friction material after running in produces a constant f-v curve under dry friction and a negative slope when lubricated with transmission fluid. At low sliding speeds, the coefficient of friction of the run-in friction material is lower than that of the glazed wet material. On the other hand, the run-in friction material has a larger friction coefficient than does the glazed friction material at higher sliding speeds.

A Study on Adhesion Friction Characteristics of Rubber for Tire Tread

  • Oh, Yumrak;Jeon, Seong-hee;Lee, Dong Youm;Kim, Hak-Joo;Kim, Jeong-Heon
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.299-307
    • /
    • 2019
  • Rubber friction properties include adhesion friction characteristics of the interface, hysteresis friction characteristics originating from repeated rubber deformations, and cohesion friction characteristics due to wear and tear. Cohesion friction is generally sufficiently small (< 3%) that it can be ignored, whereas adhesion friction has a relatively large contribution of 15%, but has not been investigated thoroughly. Therefore, through an adhesion friction study, the adhesion mechanism was examined and the relationship between friction characteristics and adhesion friction on dry surfaces was derived. The wet grip characteristics of tread rubber are fully described by the hysteresis characteristics of tires, but friction characteristics on dry roads are difficult to determine without adhesion factors. The results presented herein demonstrate that the combination of hysteresis and adhesion properties in the tread rubber sufficiently explained the characteristics of the dry grip. Based on the results of this study, technologies will be developed to determine the key factors governing adhesion friction characteristics and improve dry tire braking performance.

On the Motion of the Structure Varying Multibody Systems with Two-Dimensional Dry Friction

  • Xie Fujie;Wolfs Peter;Cole Colin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.927-935
    • /
    • 2005
  • In the present paper the dynamics of the structure varying multibody systems caused by stick-slip motion with two-dimensional dry friction are analyzed. The methods to determine friction force both in stick and slip states are described. The direct method of considering the wagon bogie system as a structure varying system was used to consider two dimensional friction at the wheelset-side frame connection. The concept of friction direction angle used to determine the friction force components of two-dimensional dry friction both in the stick and slip motion states was used. A speed depended friction coefficient was used and described approximately by hyperbolic secant function. All switch conditions were derived and friction forces both for stick and slip states. Some simulation results are provided.

Wear Characteristics on Friction Velosity and Force of Plasma Sprayed Ceramic Coating Layer (마찰속도와 마찰력의 변화에 따른 세라믹 용사 코팅재의 마모특성)

  • Kim, G.S.;Kim, S.I.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.56-61
    • /
    • 2002
  • This study is to investigate the wear behaviors of thermally sprayed ceramic coating by a pin-on-disk wear testing machine. The test specimens were plasma sprayed TiO2 coating material on carbon steel substrate(S45C) with Ni-4.5%Al alloy bond coating. Wear characteristics, friction coefficient and wear rates, were conducted at the three kinds of loads and velosities. Wear environments were dry and lubrication friction. The friction coefficients of TiO2 coating specimen in dry friction were almost same according to increase the friction velocity. The wear rate increased when the friction force is high. In lubrication friction, the wear hardly occured and friction coefficient was about 0.1. The adhesiveness of TiO2 in lubrication friction is larger than that in dry one.

  • PDF

Friction Characteristics of Aluminized Polyester Fabric under Dry - and Water- Lubricated Conditions

  • Byun, JaeYoung;Okechukwu, Nicholas Nnaemeka;Lee, Eunsuk;Park, JinGyu;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.396-402
    • /
    • 2019
  • Materials made from plastics are increasingly utilized in constructing greenhouses and setting up shield structures. Polyester fabrics have a wide range of use in horticulture and other fields of agriculture. They are utilized as a greenhouse cover and also help in combating intense climate variation in the field. Over time, these fabrics may experience friction against other surfaces. Owing to this, the surface framework of the material degenerates. This study examines the frictional characteristics of aluminized polyester fabric in both dry- and water-lubricated environments under changing applied loads and sliding speeds. Friction experiments are performed at room temperature by employing a pin on a disk. The experiments reveal that the friction coefficient decreases with increase in applied load in both dry sliding and water-lubricated environment. However, the friction coefficient decreases more under the water-lubricated setting than in the dry state. At the maximum applied load, the highest friction coefficient is discovered in the dry state with a range of 0.282 to 0.237, whereas a friction coefficient of 0.229 to 0.189 is observed in the water-lubricated state. Additionally, it is observed that the friction coefficient increases with an increase in sliding speed under both experimental environments. The examination of specimen surfaces reveals that the abrasion is minor in the water-lubricated setting compared with that in the dry state.

AN EXPERIMENTAL STUDY ON FRICTIONAL FORCES OF VARIOUS ORTHODONTIC WIRES UNDER ARTIFICIAL SALIVA (인공타액하에서 수종 교정선의 마찰력에 관한 실험적 연구)

  • Hwang, Hyeon-Shik;Park, Young-Chel
    • The korean journal of orthodontics
    • /
    • v.19 no.1 s.27
    • /
    • pp.245-256
    • /
    • 1989
  • Translational movement along an arch wire requires sufficient force to overcome frictional forces between bracket and arch wire. The orthodontist must appreciate the importance of friction in this process, and study out the influencing factors on the level of friction. The purpose of this study was to evaluate the effect of artificial saliva on frictional resistances generated between the bracket and arch wire. Independent variables of this study were arch wire material, angulation and environment. Static frictional forces of cobalt-chromium, heat-treated cobalt-chromium, beta-titanium, stainless steel wires were measured under non-angulated dry, angulated dry, non-angulated saliva, angulated saliva conditions. The results were as follows: 1. Stainless steel wires showed lower friction values in non-angulated dry condition, and heat-treated cobalt-chromium wires showed higher friction values in angulated dry condition. Higher friction values were showed in order of cobalt-chromium. stainless steel, heat-treated cobalt-chromium and beta-titanium wires in non-angulated saliva condition. and were showed in order of stainless steel, cobalt-chromium, heat-treated cobalt-chromium, beta-titanium wires in angulated saliva condition. 2. Angulation increased friction for stainless steel wires under dry condition. 3. Artificial saliva decreased friction for cobalt-chromium wires and increased friction for stainless steel wires under non-angulated condition. 4. Artificial saliva decreased friction for all wires except beta-titanium wires under angulated condition. 5. Regardless of angulation or environment. heat-treated cobalt-chromium and beta-titanium wires showed higher friction values, and stainless steel wires showed lower friction values.

  • PDF

Friction characteristics of SUS 304 and SUS 630 stainless steel in Dry, Grease-, and Oillubricated conditions and wear property in dry condition before and after Ultrasonic Nano-crystal Surface Modification (SUS 304과 SUS 630 소재의 UNSM(초음파나노 표면개질) 처리전후 Dry, Grease윤활, Oil윤활 상태하에서 마찰특성 및 Dry 상태하에서 마모특성)

  • Kim, J.H.;Pyoun, Y.S.;Park, J.H.;Choi, G.S.;Amanov, Auezhan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.521-522
    • /
    • 2010
  • PDF

Dynamic Friction Behavior of Interfaces Between Dense Dry Granular Soils and Construction Material(Concrete) (조밀한 건조조립토와 건설재료(콘크리트) 사이의 동마찰계수)

  • 김대상
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.207-213
    • /
    • 2001
  • Shaking table tests to investigate the dynamic friction behavior of interfaces between dense dry granular soils and construction material(concrete) were performed and the results are reported. The results show the variation of dynamic interface friction coefficients between dense dry granular soils and construction material was small in the sliding velocity range employed in this study. It was also observed that dynamic interface friction coefficients decreased as mean grain sizes of granular soils increased. These coefficients were compared with the friction coefficients obtained from the peak internal friction angles of the same granular soils by plane strain compression tests.

  • PDF

Frictional Characteristics of Woven and Nonwoven Wipes

  • Das A.;Kothari V. K.;Mane D.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.318-321
    • /
    • 2005
  • Demand for the fabric wipes is growing continuously. Wipes in industry are used for cleaning purpose. Cleaning involves rubbing action, so it is very important to know how much frictional force is encountered during the cleaning action. In this study the effects of normal load, sliding speed on frictional characteristics of nonwoven and woven wipes, both dry and wetted with different liquids, against glass and floor tile surfaces have been reported. With the increase in the normal load the coefficient of friction goes on decreasing for both nonwoven and woven wipes and this trend is observed in both dry and wet wipes. The coefficient of friction of both nonwoven and woven wipes against glass surface is in general higher than the floor tile surface. The wipes wetted with water shows an increase in coefficient of friction as compared to dry sample, but there is reduction in the coefficient of friction when the wipe samples are wetted with vegetable oil. In case of dry wipes, the coefficient of friction in case of nonwoven wipe is higher than the woven wipe. In case of woven wipes, the ranges of coefficient of friction either due to change in liquid type, normal load or sliding speed are in general smaller than that in case of nonwoven fabrics.

Dynamic Friction of Polyester Air-jet Textured Yarns

  • Rengasamy Raju Seenivasan;Guruprasad Raghavendran;Asis Patnaik
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.146-150
    • /
    • 2005
  • In this paper, friction of air-jet textured yams is investigated. Using a friction measuring apparatus fabricated inhouse, dynamic friction forces of the yams under yarn-to-metal (YM) and yam-to-yam (YY) rubbing modes are measured. The influence of processing variables of air-jet texturing viz., overfeed, air pressure, dry/wet texturing and normal/core-and-effect texturing on dynamic friction is analysed. The results indicate that friction force increases with increasing rubbing speeds and yam input tension. YM dynamic friction decreases initially and then starts to increase at higher overfeeds. YY dynamic friction increases with increasing overfeed. YM dynamic friction decreases with an increase in air pressure while an opposite trend is observed for YY friction. Wet textured yams have higher friction than dry textured yams. Core wetted coreand-effect textured yams have higher friction than normal textured yams.