• 제목/요약/키워드: drug resistance mechanism

검색결과 116건 처리시간 0.03초

MRSA에 대한 작약감초탕과 항생제 병용투여의 항균활성에 관한 연구 (A Study on the Antibacterial Activity of Combined Administration of Jakyakgamcho-tang and Antibiotics Against MRSA)

  • 강담희;강옥화;채희성;권동렬
    • 생약학회지
    • /
    • 제54권2호
    • /
    • pp.72-79
    • /
    • 2023
  • MRSA is Staphylococcus aureus resistant to β-lactam antibiotics, and is a worldwide infectious disease. Even with the discovery of new antibiotics, resistance develops rapidly, so new alternatives are needed. Jakyakgamcho-tang (JGT) is a combination of Jakyak and Gamcho, and has been mainly used as an antispasmodic and analgesic in oriental medicine. This study was conducted to find out whether there is an effect on MRSA in relation to the anti-inflammatory effect of JGT and the antibacterial effect of Jakyak and Gamcho found in previous studies. In this study, in order to investigate the antibacterial activity of JGT and the combined effect of existing antibiotics, after extracting JGT with 70% EtoH, the disc diffusion method, minimum inhibitory concentration (MIC), drug combination effect (FICI), and time-kill analysis (Time-kill assay), metabolic inhibition, Western blot and qRT-PCR analysis were used to confirm the antibacterial activity mechanism of MRSA of JGT. As a result of the experiment, all of MRSA showed antibacterial activity in JGT's disc diffusion method, and the MIC was 250-1000 ㎍/mL. When existing antibiotics and JGT were combined with drugs, most had synergy or partial synergy. In addition, it was confirmed that the degree of bacterial growth was suppressed over time when simultaneous administration for 24 hours. JGT showed a synergistic effect when administered together with the ATPase-inhibitor DCCD, suggesting that it affected the inhibition of ATPase. As a result of observing the expression of PBP2a, and hla protein in the JGT-treated group and the untreated control group through wstern blot, it was confirmed that the protein expression of the JGT-treated group was significantly suppressed, and the expression levels of mecA, mecR1 and hla genes were also suppressed during JGT treatment. was observed by qRT-PCR. Combining the results of the experiment, it can be seen that JGT has antibacterial activity in MRSA, and when combined with existing antibiotics, the effect was increased compared to treatment with the drug alone. This suggests that JGT can be an alternative to treatment for antibiotic resistance of MRSA.

Mitochondrial dysfunction suppresses p53 expression via calcium-mediated nuclear factor-κB signaling in HCT116 human colorectal carcinoma cells

  • Lee, Young-Kyoung;Yi, Eui-Yeun;Park, Shi-Young;Jang, Won-Jun;Han, Yu-Seon;Jegal, Myeong-Eun;Kim, Yung-Jin
    • BMB Reports
    • /
    • 제51권6호
    • /
    • pp.296-301
    • /
    • 2018
  • Mitochondrial DNA (mtDNA) mutations are often observed in various cancer types. Although the correlation between mitochondrial dysfunction and cancer malignancy has been demonstrated by several studies, further research is required to elucidate the molecular mechanisms underlying accelerated tumor development and progression due to mitochondrial mutations. We generated an mtDNA-depleted cell line, ${\rho}^0$, via long-term ethidium bromide treatment to define the molecular mechanisms of tumor malignancy induced by mitochondrial dysfunction. Mitochondrial dysfunction in ${\rho}^0$ cells reduced drug-induced cell death and decreased the expression of pro-apoptotic proteins including p53. The p53 expression was reduced by activation of nuclear $factor-{\kappa}B$ that depended on elevated levels of free calcium in $HCT116/{\rho}^0$ cells. Overall, these data provide a novel mechanism for tumor development and drug resistance due to mitochondrial dysfunction.

miR-340 Reverses Cisplatin Resistance of Hepatocellular Carcinoma Cell Lines by Targeting Nrf2-dependent Antioxidant Pathway

  • Shi, Liang;Chen, Zhan-Guo;Wu, Li-li;Zheng, Jian-Jian;Yang, Jian-Rong;Chen, Xiao-Fei;Chen, Zeng-Qiang;Liu, Cun-Li;Chi, Sheng-Ying;Zheng, Jia-Ying;Huang, Hai-Xia;Lin, Xiang-Yang;Zheng, Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10439-10444
    • /
    • 2015
  • Many chemotherapeutic agents have been successfully used to treat hepatocellular carcinoma (HCC); however, the development of chemoresistance in liver cancer cells usually results in a relapse and worsening of prognosis. It has been demonstrated that DNA methylation and histone modification play crucial roles in chemotherapy resistance. Currently, extensive research has shown that there is another potential mechanism of gene expression control, which is mediated through the function of short noncoding RNAs, especially for microRNAs (miRNAs), but little is known about their roles in cancer cell drug resistance. In present study, by taking advantage of miRNA effects on the resistance of human hepatocellular carcinoma cells line to cisplatin, it has been demonstrated that miR-340 were significantly downregulated whereas Nrf2 was upregulated in HepG2/CDDP (cisplatin) cells, compared with parental HepG2 cells. Bioinformatics analysis and luciferase assays of Nrf2-3'-untranslated region-based reporter constructor indicated that Nrf2 was the direct target gene of miR-340, miR-340 mimics suppressing Nrf2-dependent antioxidant pathway and enhancing the sensitivity of HepG2/CDDP cells to cisplatin. Interestingly, transfection with miR-340 mimics combined with miR-340 inhibitors reactivated the Nrf2 related pathway and restored the resistance of HepG2/CDDP cells to CDDP. Collectively, the results first suggested that lower expression of miR-340 is involved in the development of CDDP resistance in hepatocellular carcinoma cell line, at least partly due to regulating Nrf2-dependent antioxidant pathway.

BRAF(V600E) 돌연변이 갑상선 역형성암에서 BRAF(V600E) 억제에 의한 EGFR 발현 증가가 표적치료에 대한 저항성발현과 상피-간질세포이행과정에 미치는 영향분석 (Mechanism of Resistance and Epithelial to Mesenchymal Transition of BRAF(V600E) Mutation Thyroid Anaplastic Cancer to BRAF(V600E) Inhibition Through Feedback Activation of EGFR)

  • 변형권;나휘정;양연주;박재홍;권형주;장재원;반명진;김원식;신동엽;이은직;고윤우;최은창
    • 대한두경부종양학회지
    • /
    • 제30권2호
    • /
    • pp.53-61
    • /
    • 2014
  • Background and Objectives : Anaplastic thyroid carcinoma(ATC) is a rare but highly aggressive thyroid malignancy that is associated with an extremely poor survival despite the best multidisciplinary care. BRAF(V600E) mutation is detected in about a quarter of ATC, but unlike its high treatment response to selective BRAF inhibitor (PLX4032) in metastatic melanoma, the treatment response of ATC is reported to be low. The purpose of this study is to investigate the innate resistance mechanism responsible for this low treatment response to BRAF inhibitor and its effect on epithelial-mesenchymal transition(EMT). Materials and Methods : Two ATP cell lines, 8505C and FRO were selected and treated with PLX4032 and its drug sensitivity and effects on cell migration and EMT were examined and compared. Further investigation on the changes in signals responsible for the different treatment response to PLX4032 was carried out and the same experiment was performed on both orthotopic and ectopic xenograft mouse models. Results : FRO cell line was more sensitive to PLX4032 treatment compared to 8505C cell line. The resistance to BRAF inhibition in 8505C was due to increased expression of EGFR. Effective inhibition of both EGFR and p-AKT was achieved after dual treatment with BRAF inhibitor(PLX4032) and EGFR inhibitor(Erlotinib). Similar results were confirmed on in vivo study. Conclusion : EGFR-mediated reactivation of the PI3K/AKT pathway and MAPK pathway contributes to the relative insensitivity of BRAF(V600E) mutant ATC cells to PLX4032. Dual inhibition of BRAF and EGFR leads to sustained treatment response including cell invasiveness.

Insulin activates EGFR by stimulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells

  • Shin, Miyoung;Yang, Eun Gyeong;Song, Hyun Kyu;Jeon, Hyesung
    • BMB Reports
    • /
    • 제48권6호
    • /
    • pp.342-347
    • /
    • 2015
  • The expression of epidermal growth factor receptor (EGFR) is an important diagnostic marker for triple-negative breast cancer (TNBC) cells, which lack three hormonal receptors: estrogen and progesterone receptors as well as epidermal growth factor receptor 2. EGFR transactivation can cause drug resistance in many cancers including TNBC, but the mechanism underlying this phenomenon is poorly defined. Here, we demonstrate that insulin treatment induces EGFR activation by stimulating the interaction of EGFR with insulin-like growth factor receptor 1 (IGF-1R) in the MDA-MB-436 TNBC cell line. These cells express low levels of EGFR, while exhibiting high levels of IGF-1R expression and phosphorylation. Low-EGFRexpressing MDA-MB-436 cells show high sensitivity to insulinstimulated cell growth. Therefore, unexpectedly, insulin stimulation induced EGFR transactivation by regulating its interaction with IGF-1R in low-EGFR-expressing TNBC cells. [BMB Reports 2015; 48(6): 342-347]

Recent Progress in HER2 Associated Breast Cancer

  • Wang, Wei-Jia;Lei, Yuan-Yuan;Mei, Jin-Hong;Wang, Chun-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2591-2600
    • /
    • 2015
  • Breast cancer is the most common cancer worldwide among women and the second most common cancer. Approximately 15-23% of breast cancers over-express human epidermal growth factor receptor2 (HER2), a 185-kDa transmembrane tyrosine kinase, which is mainly found at the cell surface of tumor cells. HER2-positive breast cancer, featuring amplification of HER2/neu and negative expression of ER and PR, has the three following characteristics: rapid tumor growth, lower survival rate, and better response to adjuvant therapies. Clinically, it is notable for its role in a pathogenesis that is associated with increased disease recurrence and acts as a worse prognosis. At the same time, it represents a good target for anti-cancer immunotherapy despite the prevalence of drug resistance. New treatments are a major topic of research, and a brighter future can be expected. This review discusses the role of HER2 in breast cancer, therapeutic modalities available and prognostic factors.

도노마이신의 세포 외 배출 및 세포 독성에 미치는 플라보노이드의 효과 (Effect of Flavonoids on Efflux and Cytotoxicity of Daunomycin)

  • 정수연;고은정;김나형;이화정
    • Journal of Pharmaceutical Investigation
    • /
    • 제34권2호
    • /
    • pp.95-99
    • /
    • 2004
  • One mechanism which plays a prominent role in development of multi-drug resistance seen in cancer cells is the over-expression of P-glycoprotein (P-gp). It is known that compounds found in vegetables and fruits not only have anticarcinogenic properties but may also modulate P-gp activity. The effect of some dietary components on efflux of daunomycin (DNM), a P-gp substrate, was examined in P-gp over-expressed human uterine sarcoma cell line, MES-SA/DX5. The efflux of DNM from the cells was significantly inhibited by quercetin and verapamil, but not by 1-naphtyl-isothiocyanate (NITC). The $IC_{50}$ values for DNM in MES-SA/DX5 cells were increased by flavonoids (quercetin and fisetin), but not by NITC after 72 hour incubation with dietary constituents. In conclusion, flavonoids may play a role in the modulation of P­-gp activity in human uterine sarcoma cells.

Combination Therapy of Lactobacillus plantarum Supernatant and 5-Fluouracil Increases Chemosensitivity in Colorectal Cancer Cells

  • An, JaeJin;Ha, Eun-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권8호
    • /
    • pp.1490-1503
    • /
    • 2016
  • Colorectal cancer (CRC) is the third most common cancer in the world. Although 5-fluorouracil (5-FU) is the representative chemotherapy drug for colorectal cancer, it has therapeutic limits due to its chemoresistant characteristics. Colorectal cancer cells can develop into cancer stem cells (CSCs) with self-renewal potential, thereby causing malignant tumors. The human gastrointestinal tract contains a complex gut microbiota that is essential for the host's homeostasis. Recently, many studies have reported correlations between gut flora and the onset, progression, and treatment of CRC. The present study confirms that the most representative symbiotic bacteria in humans, Lactobacillus plantarum (LP) supernatant (SN), selectively inhibit the characteristics of 5-FU-resistant colorectal cancer cells (HT-29 and HCT-116). LP SN inhibited the expression of the specific markers CD44, 133, 166, and ALDH1 of CSCs. The combination therapy of LP SN and 5-FU inhibited the survival of CRCs and led to cell death by inducing caspase-3 activity. The combination therapy of LP SN and 5-FU induced an anticancer mechanism by inactivating the Wnt/β-catenin signaling of chemoresistant CRC cells, and reducing the formation and size of colonospheres. In conclusion, our results show that LP SN can enhance the therapeutic effect of 5-FU for colon cancer, and reduce colorectal cancer stem-like cells by reversing the development of resistance to anticancer drugs. This implies that probiotic substances may be useful therapeutic alternatives as biotherapeutics for chemoresistant CRC.

3-Deoxysappanchalcone Inhibits Cell Growth of Gefitinib-Resistant Lung Cancer Cells by Simultaneous Targeting of EGFR and MET Kinases

  • Jin-Young Lee;Seung-On Lee;Ah-Won Kwak;Seon-Bin Chae;Seung-Sik Cho;Goo Yoon;Ki-Taek Kim;Yung Hyun Choi;Mee-Hyun Lee;Sang Hoon Joo;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • 제31권4호
    • /
    • pp.446-455
    • /
    • 2023
  • The mechanistic functions of 3-deoxysappanchalcone (3-DSC), a chalcone compound known to have many pharmacological effects on lung cancer, have not yet been elucidated. In this study, we identified the comprehensive anti-cancer mechanism of 3-DSC, which targets EGFR and MET kinase in drug-resistant lung cancer cells. 3-DSC directly targets both EGFR and MET, thereby inhibiting the growth of drug-resistant lung cancer cells. Mechanistically, 3-DSC induced cell cycle arrest by modulating cell cycle regulatory proteins, including cyclin B1, cdc2, and p27. In addition, concomitant EGFR downstream signaling proteins such as MET, AKT, and ERK were affected by 3-DSC and contributed to the inhibition of cancer cell growth. Furthermore, our results show that 3-DSC increased redox homeostasis disruption, ER stress, mitochondrial depolarization, and caspase activation in gefitinib-resistant lung cancer cells, thereby abrogating cancer cell growth. 3-DSC induced apoptotic cell death which is regulated by Mcl-1, Bax, Apaf-1, and PARP in gefitinib-resistant lung cancer cells. 3-DSC also initiated the activation of caspases, and the pan-caspase inhibitor, Z-VAD-FMK, abrogated 3-DSC induced-apoptosis in lung cancer cells. These data imply that 3-DSC mainly increased mitochondria-associated intrinsic apoptosis in lung cancer cells to reduce lung cancer cell growth. Overall, 3-DSC inhibited the growth of drug-resistant lung cancer cells by simultaneously targeting EGFR and MET, which exerted anti-cancer effects through cell cycle arrest, mitochondrial homeostasis collapse, and increased ROS generation, eventually triggering anti-cancer mechanisms. 3-DSC could potentially be used as an effective anti-cancer strategy to overcome EGFR and MET target drug-resistant lung cancer.

인체 대장암세포 다층배양계에서 파크리탁셀의 투과 (Penetration of Paclitaxel in Multicellular Layers of Human Colorectal Cancer Cells)

  • 최미선;박종국;알-압드 아메드;구효정
    • Journal of Pharmaceutical Investigation
    • /
    • 제36권6호
    • /
    • pp.385-392
    • /
    • 2006
  • Paclitaxel is an important chemotherapeutic agent for the treatment of human solid tumors. Multicellular resistance(MCR) is considered to be a major mechanism of resistance of human solid tumors to chemotherapeutic agent such as paclitaxel, which includes barriers to drug penetration through tumor tissues. Multicellular layers(MCL) cultures resemble in vivo tumor condition in terms of MCR and has been used successfully to produce clinically relevant data. In the present study, we evaluated the penetration characteristics and post-penetration anti-proliferative activity of paclitaxel using MCL of human colorectal cancer cells(DLD-1 and HT-29) grown in Transwell inserts. The penetration of $[^{14}C]-paclitaxel$ was slower than that of mannitol which penetrates via paracellular pathway in DLD-1 MCL. The penetration of $[^{14}C]-paclitaxel$ was faster in HT-29 MCL compared to DLD-1 MCL, i.e., at 10 ${\mu}M$ 100% and 40% penetration were observed after 48 hr incubation for HT-29 and DLD-1 cells, respectively. When calculated using anti-proliferative activity in the conditioned media of bottom chamber, the penetration after 24 hr was very limited(less than 50%) and concentration-dependent at the concentrations tested in both MCL's. These results suggest that limited and differential penetration of paclitaxel in tumor tissues may contribute to lower and differential efficacy against human solid tumors.