• 제목/요약/키워드: drug resistance mechanism

검색결과 116건 처리시간 0.024초

Chemosensitizing effect and mechanism of imperatorin on the anti-tumor activity of doxorubicin in tumor cells and transplantation tumor model

  • Liang, Xin-li;Ji, Miao-miao;Liao, Zheng-gen;Zhao, Guo-wei;Tang, Xi-lan;Dong, Wei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권3호
    • /
    • pp.145-155
    • /
    • 2022
  • Multidrug resistance of tumors has been a severe obstacle to the success of cancer chemotherapy. The study wants to investigate the reversal effects of imperatorin (IMP) on doxorubicin (DOX) resistance in K562/DOX leukemia cells, A2780/Taxol cells and in NOD/SCID mice, to explore the possible molecular mechanisms. K562/DOX and A2780/Taxol cells were treated with various concentrations of DOX and Taol with or without different concentrations of IMP, respectively. K562/DOX xenograft model was used to assess anti-tumor effect of IMP combined with DOX. MTT assay, Rhodamine 123 efflux assay, RT-PCR, and Western blot analysis were determined in vivo and in vitro. Results showed that IMP significantly enhanced the cytotoxicity of DOX and Taxol toward corresponding resistance cells. In vivo results illustrated both the tumor volume and tumor weight were significantly decreased after 2-week treatment with IMP combined with DOX compared to the DOX alone group. Western blotting and RT-PCR analyses indicated that IMP downregulated the expression of P-gp in K562/DOX xenograft tumors in NOD/SCID mice. We also evaluated glycolysis and glutamine metabolism in K562/DOX cells by measuring glucose consumption and lactate production. The results revealed that IMP could significantly reduce the glucose consumption and lactate production of K562/DOX cells. Furthermore, IMP could also remarkably repress the glutamine consumption, α-KG and ATP production of K562/DOX cells. Thus, IMP may sensitize K562/DOX cells to DOX and enhance the antitumor effect of DOX in K562/DOX xenograft tumors in NOD/SCID mice. IMP may be an adjuvant therapy to mitigate the multidrug resistance in leukemia chemotherapy.

circRNA circSnx12 confers Cisplatin chemoresistance to ovarian cancer by inhibiting ferroptosis through a miR-194-5p/SLC7A11 axis

  • Kaiyun Qin;Fenghua Zhang;Hongxia Wang;Na Wang;Hongbing Qiu;Xinzhuan Jia;Shan Gong;Zhengmao Zhang
    • BMB Reports
    • /
    • 제56권3호
    • /
    • pp.184-189
    • /
    • 2023
  • Ovarian cancer (OC) is the most common gynecological malignancy worldwide, and chemoresistance occurs in most patients, resulting in treatment failure. A better understanding of the molecular processes underlying drug resistance is crucial for development of efficient therapies to improve OC patient outcomes. Circular RNAs (circRNAs) and ferroptosis play crucial roles in tumorigenesis and resistance to chemotherapy. However, little is known about the role(s) of circRNAs in regulating ferroptosis in OC. To gain insights into cisplatin resistance in OC, we studied the ferroptosis-associated circRNA circSnx12. We evaluated circSnx12 expression in OC cell lines and tissues that were susceptible or resistant to cisplatin using quantitative real-time PCR. We also conducted in vitro and in vivo assays examining the function and mechanism of lnc-LBCSs. Knockdown of circSnx12 rendered cisplatin-resistant OC cells more sensitive to cisplatin in vitro and in vivo by activating ferroptosis, which was at least partially abolished by downregulation of miR-194-5p. Molecular mechanics studies indicate that circSnx12 can be a molecular sponge of miR-194-5p, which targets SLC7A11. According to our findings, circSnx12 ameliorates cisplatin resistance by blocking ferroptosis via a miR-194-5p/SLC7A11 pathway. CircARNT2 may thus serve as an effective therapeutic target for overcoming cisplatin resistance in OC.

Genetic Variation in the ABCB1 Gene May Lead to mRNA Level Chabge: Application to Gastric Cancer Cases

  • Mansoori, Maryam;Golalipour, Masoud;Alizadeh, Shahriar;Jahangirerad, Ataollah;Khandozi, Seyed Reza;Fakharai, Habibollah;Shahbazi, Majid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8467-8471
    • /
    • 2016
  • Background: One of the major mechanisms for drug resistance is associated with altered anticancer drug transport, mediated by the human-adenosine triphosphate binding cassette (ABC) transporter superfamily proteins. The overexpression of adenosine triphosphate binding cassette, sub-family B, member 1 (ABCB1) by multidrug-resistant cancer cells is a serious impediment to chemotherapy. In our study we have studied the possibility that structural single-nucleotide polymorphisms (SNP) are the mechanism of ABCB1 overexpression. Materials and Methods: A total of 101 gastric cancer multidrug resistant cases and 100 controls were genotyped with sequence-specific primed PCR (SSP-PCR). Gene expression was evaluated for 70 multidrug resistant cases and 54 controls by real time PCR. The correlation between the two groups was based on secondary structures of RNA predicted by bioinformatics tool. Results: The results of genotyping showed that among 3 studied SNPs, rs28381943 and rs2032586 had significant differences between patient and control groups but there were no differences in the two groups for C3435T. The results of real time PCR showed over-expression of ABCB1 when we compared our data with each of the genotypes in average mode. Prediction of secondary structures in the existence of 2 related SNPs (rs28381943 and rs2032586) showed that the amount of ${\Delta}G$ for original mRNA is higher than the amount of ${\Delta}G$ for the two mentioned SNPs. Conclusions: We have observed that 2 of our studied SNPs (rs283821943 and rs2032586) may elevate the expression of ABCB1 gene, through increase in mRNA stability, while this was not the case for C3435T.

Nrf2 영구 넉다운 난소암 세포주의 Proteasome 저해 항암제 Bortezomib에 대한 감수성 증가 (Enhanced Sensitivity to Proteasome Inhibitor Bortezomib in Nrf2 Knockdown Ovarian Cancer Cells)

  • 이상환;최보현;곽미경
    • 약학회지
    • /
    • 제55권6호
    • /
    • pp.466-472
    • /
    • 2011
  • NF-E2-related factor 2 (Nrf2), a master regulator of antioxidant genes in animals, has been associated with the resistance of cancer cells to several cytotoxic chemotherapeutics. Bortezomib, a reversible inhibitor of the 26S proteasome, is a novel class anti-cancer therapeutics approved for the treatment of refractory multiple myeloma. However, the molecular mechanism of drug-resistance remains elusive. In the present study, bortezomib sensitivity has been investigated in Nrf2 knockdown ovarian cancer cells. When Nrf2 expression is stably repressed using interfering RNA expression, bortezomib-induced apoptosis and cell death were significantly enhanced compared to nonspecific RNA control cells. Knockdown cells showed elevated expression in the catalytic subunit PSMB5, PSMB6, and PSMB7 compared to the control, and failed to induce heme oxygenase-1 expression following bortezomib treatment. These indicate that differential proteasome levels and altered expression of stress-response genes could be underlying mechanisms of bortezomib sensitization in Nrf2-inhibited ovarian cancer cells.

Characterization of Quinolone-Resistant Clinical Isolates of Escherichia coil in Korea

  • Lee, Yeonhee;Yoojung Oh;Park, Seohyung;Misun Ha
    • Journal of Microbiology
    • /
    • 제40권2호
    • /
    • pp.98-103
    • /
    • 2002
  • Twenty-eight clinical isolates of Escherichia coil, composed of thirteen norfloxacin resistant isolates (MIC of >16${\mu}$g/ml), one intermediately resistant isolate (MIC of 8${\mu}$g/ml), and fourteen susceptible isolates (MIC of <4${\mu}$g/ml), were randomly selected to study the norfloxacin resistance mechanism and phylogeny in clinical isolates in Korea. Eleven nofloxacin resistant isolates and one susceptible isolate were multi-drug resistant (MDR). Every norfloxacin resistant isolate with MIC higher than 32${\mu}$g/ml had the same three mutations: Ser83\longrightarrowLeu and Asp87\longrightarrowAsn or Tyr in GyrA and Ser80\longrightarrowIle in ParC. Whereas a resistant isolate with MIC of 16${\mu}$g/ml had three mutations but Asp87 in GyrA was replaced with Gly instead of Asn. The intermediately resistant isolate had the same two mutations in GyrA but a different mutation in ParC, Glu84\longrightarrowLys. Among the susceptible isolates, two isolates with MIC of 4${\mu}$g/ml had one mutation: Ser83\longrightarrowiLeu in GyrA, and no mutation was found in the susceptible isolates. Resistant isolates showed higher efflux activity than the susceptible ones, with random amplification of polymorphic DNA (RAPD), six susceptible isolates form a separate group from the rest of the isolates.

C-terminal truncated HBx reduces doxorubicin cytotoxicity via ABCB1 upregulation in Huh-7 hepatocellular carcinoma cells

  • Jegal, Myeong-Eun;Jung, Seung-Youn;Han, Yu-Seon;Kim, Yung-Jin
    • BMB Reports
    • /
    • 제52권5호
    • /
    • pp.330-335
    • /
    • 2019
  • Hepatitis B virus (HBV) encoding the HBV x protein (HBx) is a known causative agent of hepatocellular carcinoma (HCC). Its pathogenic activities in HCC include interference with several signaling pathways associated with cell proliferation and apoptosis. Mutant C-terminal-truncated HBx isoforms are frequently found in human HCC and have been shown to enhance proliferation and invasiveness leading to HCC malignancy. We investigated the molecular mechanism of the reduced doxorubicin cytotoxicity by C-terminal truncated HBx. Cells transfected with C-terminal truncated HBx exhibited reduced cytotoxicity to doxorubicin compared to those transfected with full-length HBx. The doxorubicin resistance of cells expressing C-terminal truncated HBx correlated with upregulation of the ATP binding cassette subfamily B member 1(ABCB1) transporter, resulting in the enhanced efflux of doxorubicin. Inhibiting the activity of ABCB1 and silencing ABCB1 expression by small interfering ribonucleic acid (siRNA) increased the cytotoxicity of doxorubicin. These results indicate that elevated ABCB1 expression induced by C-terminal truncation of HBx was responsible for doxorubicin resistance in HCC. Hence, co-treatment with an ABCB1 inhibitor and an anticancer agent may be effective for the treatment of patients with liver cancer containing the C-terminal truncated HBx.

Screening for Chemosensitizers from Natural Plant Extracts through the Inhibition Mechanism of P-glycoprotein

  • Ahn, Hee-Jeong;Song, Im-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권5호
    • /
    • pp.269-275
    • /
    • 2010
  • P-gp plays a critical role in drug disposition and represents a mechanism for the development of multidrug resistance. Flavonoids, a major class of natural compounds widely present in foods and herbal products, have been shown to inhibit P-gp. Therefore, the aim of this study was to identify new candidate chemosensitizers by screening various plant extracts. The ability of natural plant extracts to inhibit P-gp activity was assessed by measuring cellular accumulation of calcein AM, daunorubicin and vincristine in P-gp overexpressing MDCKII-MDR1 cells. Among more than 800 plant extracts, eight were found to inhibit P-gp activity. Curcuma aromatica extract produced greatest inhibition, followed by Curcuma longa and Dalbergia odorifera extracts. Extracts of Aloe ferox, Curcuma zedoariae rhizome, Zanthoxylum planispinum, and Ageratum conyzoides showed moderate inhibitory effects. Curcumin and quercetin exhibited similar inhibition of P-gpmediated efflux of daunorubicin and vincristine, and flavones had a lesser effect. When chemosensitizing effect was evaluated by measuring daunorubicin sensitivity to MDCKII-MDR1 cells in the presence of natural plant extracts, Curcuma aromatica showed the most potent chemosensitizing effect based on daunorubicin cytotoxicity. In conclusion, natural plant extracts such as Curcuma aromatica can potently inhibit P-gp activity and may have potential as a novel chemosensitizers.

Chlorothalonil- Biotransformation by Glutathione S- Transferase of Escherichia coli

  • Kim, Young-Mog;Park, Kunbawui;Jung, Soon-Hyun;Park, Jun-Ho;Kim, Won-Chan;Joo, Gil-Jae;Rhee, In-Koo
    • Journal of Microbiology
    • /
    • 제42권1호
    • /
    • pp.42-46
    • /
    • 2004
  • It has recently been reported that one of the most important factors of yeast resistance to the fungicide chlorothalonil is the glutathione contents and the catalytic efficiency of glutathione S-transferase (GST) (Shin et al., 2003). GST is known to catalyze the conjugation of glutathione to a wide variety of xenobiotics, resulting in detoxification. In an attempt to elucidate the relation between chlorothalonil-detoxification and GST, the GST of Escherichia coli was expressed and purified. The drug-hypersensitive E. coli KAM3 cells harboring a plasmid for the overexpression of the GST gene can grow in the presence of chlorothalonil. The purified GST showed chlorothalonil-biotransformation activity in the presence of glutathione. Thus, chlorothalonil is detoxified by the mechanism of glutathione conjugation catalyzed by GST.

Transdermal permeation-enhancing activity of N-adamantyl n-alkanamides for lbuprofen in the rabbit

  • Han, Suk-Kyu;Park, Yong-Hoon;Ko, Young-Ill;Kim, Young-Mi
    • Archives of Pharmacal Research
    • /
    • 제19권2호
    • /
    • pp.95-99
    • /
    • 1996
  • Four N-adamantyl n-alkanamides were prepared by amide condensation reaction between amantadine and n-alkanoic acid. Their enhancing activity on the penetration of ibuprofen through rabbit skin from petrolatum ointment was evaluated in in-vivo experiment. The experiments showed that the compounds have a strong transdermal penetration-enhancing activity, and their activities were comparable with that of Azone. The measurements of the fluorescence polarization of DP[-i-labelled DPPC liposomes showed that these compounds considerablly decreased the phase transition temperature of the liposomes. The mechanism of the transdermal penetration-enhancing activity of the compounds was ascribed to the reduction of the resistance to drug flux of the stratum corneum lipid layers due to the loose packing of the layers when the bulk head group of the enhancers inserts into the layers.

  • PDF

Ferroptosis and its role in gastric and colorectal cancers

  • Jinxiu Hou;Bo Wang;Jing Li;Wenbo Liu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권3호
    • /
    • pp.183-196
    • /
    • 2024
  • Ferroptosis is a novel mechanism of programmed cell death, characterized by intracellular iron overload, intensified lipid peroxidation, and abnormal accumulation of reactive oxygen species, which ultimately resulting in cell membrane impairment and demise. Research has revealed that cancer cells exhibit a greater demand for iron compared to normal cells, indicating a potential susceptibility of cancer cells to ferroptosis. Stomach and colorectal cancers are common gastrointestinal malignancies, and their elevated occurrence and mortality rates render them a global health concern. Despite significant advancements in medical treatments, certain unfavorable consequences and drug resistance persist. Consequently, directing attention towards the phenomenon of ferroptosis in gastric and colorectal cancers holds promise for enhancing therapeutic efficacy. This review aims to elucidate the intricate cellular metabolism associated with ferroptosis, encompassing lipid and amino acid metabolism, as well as iron metabolic processes. Furthermore, the significance of ferroptosis in the context of gastric and colorectal cancer is thoroughly examined and discussed.