• Title/Summary/Keyword: drug delivery time

Search Result 185, Processing Time 0.024 seconds

Analysis of Factors Affecting on Satisfaction of Pharmacy Service (약국서비스 만족에 영향을 미치는 요인 분석 - 환자체감시간과 실 조제시간 비교를 중심으로 -)

  • Park, Seong-Hi;Suh, Jun-Kyu;Yoon, Hye-Seol;Hong, Jin-Young;Park, Gun-Je
    • Quality Improvement in Health Care
    • /
    • v.5 no.2
    • /
    • pp.202-215
    • /
    • 1998
  • Purpose : To shorten processing time for variety of medical affairs of the patient at the outpatient clinic of a big hospital is very important to qualify medical care of the patient. Therefore, patient's waiting time for drug delivery after doctor's prescription is often utilized as a strong tool to evaluate patient satisfaction with a medical care provided. We performed this study to investigate factors influencing patient satisfaction related with waiting time for drug delivery. Methods : The data were collected from July 21 to August 12, 1998. A total 535 patients or their families who visited outpatient clinics of Inha University Hospital were subjected to evaluate the drug delivery time and the level of their satisfaction related, which were compared with those objectively evaluated by Quality Improvement Team. The reliability of the scale was tested with Cronbach's alpha, and the data were analyzed using frequency, t-test, ANOVA, correlation analysis and multiple regression. Results : The mean drug delivery time subjectively evaluated by the patient (16.1 13.0 min) was longer than that objectively evaluated (10.9 7.6 min) by 5.2 min. Drug delivery time objectively evaluated was influenced by the prescription contents, total amount or type of drug dispensed, etc, as expected. The time discrepancy between two evaluations was influenced by several causative factors. One of those proved to be a patient's late response to the information from the pharmacy which the drug is ready to deliver. Interestingly, this discrepancy was found to be more prominent especially when waiting place for drug delivery was not less crowded. Other factors, pharmaceutical counseling at the pharmacy, emotional status or behavior of a patient while he waits for the medicine, were also found to influence the time subjectively evaluated. Regarding the degree of patient satisfaction with the drug delivery, majority of patients accepted drug delivery time with less than 10 min. It was also found to be influenced by emotional status of the patient as well as kindness or activity of pharmaceutical counselor. Conclusion : The results show that, besides prescription contents, behavior pattern or emotional status of a patient, environment of the waiting place, and quality of pharmaceutical counseling at the pharmacy, may influence the patient's subjective evaluation of waiting time for drug delivery and his satisfaction related with the service in the big hospital. In order to improve patient satisfaction related with waiting time for drug delivery, it will be cost effective to qualify pharmaceutical counseling and information system at the drug delivery site or waiting place rather than to shorten the real processing time within the pharmacy.

  • PDF

The study on appropriateness of adapting door-to-door delivery system for the reducong of waiting time at outpatient pharmacy department in Tertiary care hospital (3차 진료기관 외래약국 투약대기시간 단축을 위한 택배 제도 도입 타당성 조사)

  • Song, Jung-Hup
    • Quality Improvement in Health Care
    • /
    • v.3 no.1
    • /
    • pp.144-152
    • /
    • 1996
  • Background : Because of introduction of nationwide health care system in 1989 and the improvement of socioeconomic status of population the number of outpatient visiting university hospital has good facilities and manpower has increased. So the waiting time for medical service at university hospital are lengthened. Particularly outpatients complain that waiting for prescribed drugs at pharmacy depart are long. Reducing waiting time at pharmacy depart door-to-door delivery system that the patients applying for door-to-door delivery receive prescribed drug at home without waiting at pharmacy depart were studied. The objective of this study is to analysis the opinion of outpatients for door-to-door delivery system, to study the appropriateness of adopting the system and to produce ideal model for the system. Method : Outpatients waiting drug at pharmacy depart were questioned about door-to-door delivery system. to find the factors affect utilizing the system the logistic regression was used. Result : 83.3% of the patients want to utilize the system without charging, and 72.9% of the patients want to utilized system with charging. 68.3% of patients with charging want to use this system because of long waiting time at pharmacy depart. 50% of patients who do not want to use door-to-door do not use this system because of incorrect delivery. The affecting factors to utilize the system were sex, waiting time, fee. Conclusion : The model for door to door delivery system. 1. door-to-door personnel reside in hospital and the patient want to utilize the system apply for the delivery with charging. 2. The applied drugs dispense at spare time. 3. Delivery company gathers drug at appointed time and delivers. 4. The delivery fee is 2,000-3,000 won. 5. To prevent from loss and changing the drug the name of patient on packet are printed and drug packet are sealed. 6. The company submit the confirm sheet which are written that the patient received drug correctly to hospital. 7. The delivery time of drug is reserved for the convenience of receiving.

  • PDF

Combined nano-particle drug delivery and physiotherapy in treatment of common injuries in dance-sport

  • Weixin Dong;Gang Lu;Yangling Jiang;Fan Zhou;Xia Liu;Chunxia Lu
    • Advances in nano research
    • /
    • v.15 no.3
    • /
    • pp.225-237
    • /
    • 2023
  • Combination of novel technologies with traditional physiotherapy in rehabilitation in injured athletes have shown to provide improved time of recovery. In specific, nanodrugs delivery systems are widely utilized as a counterpart to the physiotherapy in injuries in sports. In the present study, we focus on the common injuries in dance-sports, their recovery and the effect combination of nano-particle drug delivery with the physiotherapy practices. In this regard, a comprehensive review on the common injuries in dance sport is provided. Moreover, the researches on the effectiveness of the nano-particle drug delivery in therapy of such injuries and in similar cases are provided. The possibility of using combination of nano-particle drug delivery and physiotherapy is discussed in detail. Finally, using artificial intelligence methods, predictions on the recovery time and after-treatment side-effects is investigated. Artificial Neural Network (ANN) predictions suggested that using nano-particle drug delivery systems along with physiotherapy practices could provide shortened treatment time to recovery in comparison to conventional drugs. Moreover, the post-recover effects are less than the conventional methods.

Fabrication and Evaluation of Active Drug Delivery System Using Polypyrrole (폴리피롤을 이용한 능동형 약물전달시스템의 제작 및 평가)

  • Lee, Sang-Jo;Lee, Seung-Ki;Pak, James Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.47-55
    • /
    • 2004
  • This paper presents drug release properties of active drug delivery system (DDS) using volume change of polypyrrole (PPy). The incorporation of various chemical substances into the PPy and controlling its release with the externally applied voltage to the PPy are possible. In order to confirm possibility for drug delivery system qualitatively, indicator(phenol red) was examined as a dopant of PPy. The applied voltage to the PPy electrode was set to -2 V and this negative voltage makes the anionic indicator released in saline solution. After qualitative analysis, in order to confirm quantitative drug release characteristic of PPy, salicylate which is one of the aspirin substance was used as a dopant of PPy. As a result, the salicylate release characteristics with time was thoroughly investigated while varying the electrode area, polymerization time, the applied voltage for drug release. Based on these quantitative results, a preliminary experiment was carried out to check the feasibility of the PPy applicable to the neuronal system.

A Ternary Polymeric Matrix System for Controlled Drug Delivery of Highly Soluble Drug with High Drug Loading : Diltiazem Hydrochloride (염산 딜티아젬의 방출을 제어하기 위한 삼중 폴리머 매트릭스 시스템)

  • Kim, Hyun-Jo;Fassihi, Reza
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • The purpose of this study was to use a ternary polymeric matrix system for high drug loading of a highly soluble drug for controlled release delivery. The controlled drug delivery of diltiazem HCl (solubility > 50% in water at $25^{\circ}C$) with high loading dose (the final loading dose of drug was 34%) from a ternary polymeric matrix (gelatin, pectin, HPMC) was successfully accomplished. This simple monolithic system with 240 mg drug loading provided near zero-order release over a 24 hour-period by which time the system was completely dissolved. The release kinetics of diltiazem HCl tablet with high loading dose from the designed ternary polymeric system was dependent on the ratios of HPMC : pectin binary mixture. The release rate increased as pectin : HPMC ratio were increased. Swelling behavior of the ternary system and the ionic interaction of formulation components with cationic diltiazem molecule appear to control drug diffusion and the release kinetics. Comparable release profiles between commercial product and the designed system were obtained. The binding study between gelatin with diltiazem HCl showed the presence of two binding sites for drug interaction with subsequent controlled diffusion upon swelling. This designed delivery system is easy to manufacture and drug release behavior is highly reproducible and offers advantages over the existing commercial product.

  • PDF

Development of the Portable Drug Delivery Systems with a Piezoelectric Micropump (압전 마이크로펌프 방식의 휴대용 약물전달장치 개발)

  • Kim, Sei Yoon;Kim, Young Tae;Seo, Hyun Bae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.71-76
    • /
    • 2015
  • The therapy of injecting a fixed amount of a prescribed drug for a predetermined time is an effective treatment in relieving pain during anticancer treatments. Due to recent medical technology development, cancer is currently classified as a disease that can be managed in the patient's lifetime. If patients were able to use a drug delivery system that was portable, sustainable and had an accurate flow control, they would be able to inject medication whenever they need. In this study we developed a piezoelectric micropump for a drug delivery system by designing a pump chamber, check valve and diaphragm. We also developed a driving circuit that consumes low power and to which we applied a variety of signals. We fabricated a portable drug delivery system with this piezoelectric micropump and driving circuit. In addition, through a performance test, we confirmed that the system can precisely control the drug flow rate.

Local Drug Delivery System Using Biodegradable Polymers

  • Khang, Gil-Son;Rhee, John M.;Jeong, Je-Kyo;Lee, Jeong-Sik;Kim, Moon-Suk;Cho, Sun-Hang;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.207-223
    • /
    • 2003
  • For last five years, we are developing the novel local drug delivery devices using biodegradable polymers, especially polylactide (PLA) and poly(D,L-lactide-co-glycolide) (PLGA) due to its relatively good biocompatibility, easily controlled biodegradability, good processability and only FDA approved synthetic degradable polymers. The relationship between various kinds of drug [water soluble small molecule drugs: gentamicin sulfate (GS), fentanyl citrate (FC), BCNU, azidothymidine (AZT), pamidronate (ADP), $1,25(OH)_2$ vitamin $D_3$, water insoluble small molecule drugs: fentanyl, ipriflavone (IP) and nifedipine, and water soluble large peptide molecule drug: nerve growth factor (NGF), and Japanese encephalitis virus (JEV)], different types of geometrical devices [microspheres (MSs), microcapsule, nanoparticle, wafers, pellet, beads, multiple-layered beads, implants, fiber, scaffolds, and films], and pharmacological activity are proposed and discussed for the application of pharmaceutics and tissue engineering. Also, local drug delivery devices proposed in this work are introduced in view of preparation method, drug release behavior, biocompatibility, pharmacological effect, and animal studies. In conclusion, we can control the drug release profiles varying with the preparation, formulation and geometrical parameters. Moreover, any types of drug were successfully applicable to achieve linear sustained release from short period ($1{\sim}3$ days) to long period (over 2 months). It is very important to design a suitable formulation for the wanting period of bioactive molecules loaded in biodegradable polymers for the local delivery of drug. The drug release is affected by many factors such as hydrophilicity of drug, electric charge of drug, drug loading amount, polymer molecular weight, the monomer composition, the size of implants, the applied fabrication techniques, and so on. It is well known that the commercialization of new drug needs a lot of cost of money (average: over 10 million US dollar per one drug) and time (average: above 9 years) whereas the development of DDS and high effective generic drug might be need relatively low investment with a short time period. Also, one core technology of DDS can be applicable to many drugs for the market needs. From these reasons, the DDS research on potent generic drugs might be suitable for less risk and high return.

A Diffusion-based Model Theory of Passive-Targeted Drug Delivery in Solid Tumors (단단한 종양 안에 수동 조준된 약물의 전달에 관한 확산에 기초한 모델 이론)

  • Choi, Joon-Hyuck;Kang, Nam-Lyong;Choi, Sang-Don
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.161-166
    • /
    • 2007
  • A model theory of passive-targeted drug delivery in sphere-shaped solid tumors is introduced on the basis of Fick's law of diffusion, with appropriate boundary and initial conditions. For a uniform initial concentration inside the tumor, the concentration is obtained as a function of time and radial position. The concentration is shown to approach the equilibrium distribution as the time elapses, as is expected by the Gedanken Experiment. The time-evolution rate is found to be determined by the diffusion coefficient of the drug in the tissue, the size of the tumor, the volume of the drug-injected region, and the concentration gradient at the boundary.

  • PDF

Development and Characterization of Membrane for Local Delivery of Cephalexin

  • Shin, Sang-Chul;Oh, In-Joon;Cho, Seong-Jin
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 1996
  • Laminated films composed of drug-containing reservoir layer and drug-free membrane were prepared. Zero-order drug release with lag time was achieved by laminating drug-free film onto the reservoir layer, while burst effect was observed on cast-on film. The rate controlling membrane was either attached to or cast directly into the reservoir. The release rate was independent on the reservoir composition but dependent on the composition of rate-controlling membrane. In growth inhibitory test of cephalexin from Eudragit RS film to Streptococcus Mutans, the disk even after release test for 72 hours showed more bacterial growth inhibition than that of control. Permeation of drug through rat skin was proportional to the HPC fraction in the film. We could control the release of cephalexin from the film by changing the fraction of Eudragit RS, HPC and DEP content. Consequently, Eudragit RS/HPC film was found to be very effective system for local delivery of drugs.

  • PDF

Poly(vinyl pyrrolidone) Conjugated Lipid System for the Hydrophobic Drug Delivery

  • Lee, Hye-Yun;Yu, Seol-A;Jeong, Kwan-Ho;Kim, Young-Jin
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.547-552
    • /
    • 2007
  • Water soluble polymer, poly(vinyl pyrrolidone) was chosen to conjugate with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(succinyl) (N-succinyl DPPE) to make a new drug delivery system. PVP with an amine group (amino-PVP) was polymerized by free radical polymerization. The amine group of amino-PVP was conjugated with the carboxylic group of N-succinyl DPPE. The resultant conjugate could form nanoparticles in the aqueous solution; these nanoparticles were termed a lipid-polymer system. The critical aggregation concentration was measured with pyrene to give a value of $1{\times}10^{-3}g/L$. The particle size of the lipid-polymer system, as measured by DLS, AFM and TEM, was about 70 nm. Lipophilic component in the inner part of the lipid-polymer system could derive the physical interaction with hydrophobic drugs. Griseofulvin was used as a model drug in this study. The loading efficiency and release profile of the drug were measured by HPLC. The loading efficiency was about 54%. The release behavior was sustained for a prolonged time of 12 days. The proposed lipid-polymer system with biodegradable and biocompatible properties has promising potential as a passive-targeting drug delivery carrier because of its small particle size.