• Title/Summary/Keyword: drug carrier

Search Result 233, Processing Time 0.03 seconds

Dissolution Characteristics of Biphenyl Dimethyl Dicarboxylate from Solid Dispersions with Copolyvidone

  • Moon, Jee-Hyun;Chun, In-Koo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.118-118
    • /
    • 1997
  • Solid dispersions were used to increase the dissolution rate of biphenyl dimethyl dicarboxylate (DDB) in water, with the ultimate goal of optimizing its bioavailability when incoporated into pharmaceuticals. Carriers used were Kollidon 30, Kollidon VA 64, 2-hydroxypropyl-${\beta}$-cyclodextrin (HPCD), sodium salicylate or sodium benzoate. DDB solid dispersions were prepared at drug to carrier proportions ranging from 1 : 5 to 1 : 20 (w/w) by solvent evaporation method. DDB tablets (7.5 mg) were prepared by compressing the powder mixture composed of solid dispersions, lactose, corn starch, crospovidone and magnesium stearate using a single-punch press. DDB capsules (7.5 mg) were prepared by filing the mixture into empty hard gelatin capsules (size #1). Dissolution studies of DDB from powdered solid dispersions, tablets and capsules were performed in 900 $m\ell$ of water at 100 rpm and 37$^{\circ}C$ by the paddle method. The dissolved amount was assayed by HPLC and expressed as the mean(%)of three determinations.

  • PDF

Molecular Aspects of Organic Ion Transporters in the Kidney

  • Cha, Seok-Ho;Endou, Hitoshi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.107-122
    • /
    • 2001
  • A function of the kidney is elimination of a variety of xenobiotics ingested and wasted endogenous compounds from the body. Organic anion and cation transport systems play important roles to protect the body from harmful substances. The renal proximal tubule is the primary site of carrier-mediated transport from blood into urine. During the last decade, molecular cloning has identified several families of multispecific organic anion and cation transporters, such as organic anion transporter (OAT), organic cation transporter (OCT), and organic anion-transporting polypeptide (oatp). Additional findings also suggested ATP-dependent organic ion transporters such as MDR1/P-glycoprotein and the multidrug resistance-associated protein (MRP) as efflux pump. The substrate specificity of these transporters is multispecific. These transporters also play an important role as drug transporters. Studies on their functional properties and localization provide information in renal handling of drugs. This review summarizes the latest knowledge on molecular properties and pharmacological significance of renal organic ion transporters.

  • PDF

Polyvinyl butyral DMN-conjugates for the controlled release of singlet oxygen in medical and antimicrobial applications

  • Posavec, Damir;Muller, Rainer;Bogner, Udo;Bernhardt, Gunther;Knor, Gunther
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.2
    • /
    • pp.73-79
    • /
    • 2014
  • Covalent attachment of 1, 4-dimethylnaphthalene (DMN) based endoperoxide forming subunits to a polyvinyl butyral (PVB) backbone has been achieved. The functionalized polymer materials prepared and characterized here can serve as biocompatible carrier systems for studying cellular uptake, intermediate storage and delayed release of singlet oxygen, which opens up new doors for optimizing a variety of medical applications of photogenerated DMN-endoperoxides such as antiviral, antibacterial, antiplasmodial and antitumor activity.

Simple and Highly Efficient Droplet Merging Method using Viscosity Difference (점도 차이를 이용한 간단하고 효율적인 액적의 병합 방법)

  • Jin, Byung-Ju;Kim, Young-Won;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1752-1757
    • /
    • 2008
  • Simple and highly efficient droplet merging method is proposed, which enables two nanoliter or picoliter droplets to merge regularly in a straight microchannel. We observe that two droplets of the same size but of different viscosities are merged by velocity difference induced as they are transported with the carrier fluid. To make viscosity difference, the mass ratio of water and glycerol is varied. Two droplets of the same size or of different sizes are generated alternatingly in the cross channel by controlling flowrates. This droplet merging method can be used to mix or encapsulate one target sample with another material, so that it can be applied to cell lysis, particle synthesis, drug discovery, hydrogel-bead production, and so on.

  • PDF

Study on Hydrophobic Drug-Soluble Carrier Coprecipitates(III) -Diuretic Effects of Furosemide-PVP Coprecipitate- (Furosemide-PVP공침물(共沈物)의 이뇨효과(利尿劾果)에 관(關)한 연구(硏究))

  • Shin, Sang-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.9 no.1
    • /
    • pp.7-14
    • /
    • 1979
  • The relative efficacy on the renal function of rabbits by oral administration of furosemide and 1 : 2 furosemide-PVP coprecipitate was compared by measuring the urine volume in response to maximal response and the amounts of electrolytes excreted in urine. The furosemide produced a rapid onset, short duration of diuresis, in contrast, the 1: 2 furosemide-PVP coprecipitate, a rapid onset, significantly larger magnitude, and longer duration of diuresis and therefore the bioavailability of furosemide from the coprecipitate were increased significantly. The average urine volume and the amount of sodium and potassium excreted in urine were increased about 2.9-, 14.8-, and 1.8-fold from furosemide, and about 6.2-, 24.2-, and 3.6-fold from 1 : 2 furosemide- PVP 40,000 coprecipitate, rerpectively, comparing by their control values.

  • PDF

The Effect on the Dissolution Rate of Sulfamerazine from Sugar Glass Dispersion System (Sulfamerazine-Sugar Glass Dispersion의 용출속도에 관한 연구)

  • Ku, Young-Soon;Sung, Kyung-Soo
    • YAKHAK HOEJI
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 1990
  • Three sugar glass dispersions of sulfamerazine were prepared using dextrose, galactose and sucrose as the carriers, with the ratio of the drug to the carrier was 1:9. The chemical stability of sulfamerazine in the glass dispersion system was studied using TLC. TLC revealed no additional spot and there was good correspondence with the Sulfamerazine itself. While time required to dissolve 50%($T_{50%}$) of sulfamerazine powder was 390 min that of dextrose glass dispersion system was 1.5 min. and galactose system was 4.0 min. in distilled water. 23) $T_{50%}$ of physical mixture with dextrose, galactose and sucrose were 26.4 min., 26.5 min., and 26.0 min. respectively in distilled water. $T_{50%}$ of control was 54 min. and those of all of the glass dispersion systems were within 1 min. in 0.1N HCl. The dissolution rates of sulfamerazine from sugar glass dispersion system in distilled water was greater than that in 0.1N HCl.

  • PDF

Effects of Oil type on the Stability of Oil-in-Water Lipid Nanoemulsion

  • Lee, Seung-Jun;Han, Sa Ra;Jeong, Jae Hyun;Kim, Jong-Duk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.667-675
    • /
    • 2016
  • Nanoemulsions are actively used in several applications for pharmaceutical, cosmetic and chemical industries. In this study, we propose the use of microfluidizer known as high pressure homogenizer to prepare lipid nanoemulsion as a potent cosmetic delivery carrier. The lipid nanoemulsions were prepared by O/W emulsion with hydrogenated lecithin and different type of oils. Effects of oil type on the stability of the lipid nanoemulsion were investigated with Dynamic Light Scattering (DLS) and Zeta-potential. Arbutin was used as model drug for transdermal administration through hairless mouse skin. Transdermal arbutin delivery using the lipid nanoemulsions was studied with HPLC method.

Studies on Hydrophobic Drug-Soluble Carrier Coprecipitates(1)

  • Shin, Sang-Chul
    • Archives of Pharmacal Research
    • /
    • v.2 no.1
    • /
    • pp.35-47
    • /
    • 1979
  • In order to increase the dissolution rate of furosemide(4-choro-N-furfury1-5-sulfamoy1 anthranilic acid_, various ratio coprecipitates with water-soluble polymers, such as polyvinylpyrrolidone and polythylene glycol, of different molecular weight, were prepared and quantitatively studied by comparing their dissolution characteristics of furosemide at powder state and at nondisintegrating disk state containing constant surface area at various temperatures and rotating velocities. The dissolution characteristics of furosemide from pure furosemide disks and 1:2(w/w) furosemide-PVP coprecipitate disks were in accordance with Noyes-Nernst equation and the rate constant of dissolution was proportional to the square root of rotating velocity of the disks. The intrinsic rate of dissoluton at 150 rpm, 37.deg.C was $2.21{\times}10^{-7}$ for the PVP 10, 000 COPRECIPITATE, $1.64{\times}10^{-7}$ for the PVP 40, 000 coprecipitate, and$ 1.44 {\times} 10^{-7}$for the PVP 360, 000 corprecipitate, while the rate was $1.27{\times}10^{-8}M/cm^{2} min$ for pure furosemide, repectively. The activation energy of dissolution was about 17, 000 for furosemide and about 7, 300 cal/mole for the 1:2 furosemide PVP 40, 000 coprecipitate, respectively.

  • PDF

Bacterial Outer Membrane Vesicles as a Delivery System for Virulence Regulation

  • Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1343-1347
    • /
    • 2016
  • Outer membrane vesicles (OMVs) are spherical nanostructures that are ubiquitously shed from gram-negative bacteria both in vitro and in vivo. Recent findings revealed that OMVs, which contain diverse components derived from the parent bacterium, play an important role in communication with neighboring bacteria and the environment. Furthermore, nanoscale proteoliposomes decorated with pathogen-associated molecules attract considerable attention as a non-replicative carrier for vaccines and drug materials. This review introduces recent advances in OMV biogenesis and discusses the roles of OMVs in the context of bacterial communication and virulence regulation. It also describes the remarkable accomplishments in OMV engineering for diverse therapeutic applications.