• Title/Summary/Keyword: drought year

Search Result 261, Processing Time 0.031 seconds

Improved method of the conventional flow duration curve by using daily mode discharges (일 최빈유량을 이용한 유황곡선 개선방안)

  • Park, Tae Sun
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.355-363
    • /
    • 2021
  • The conventional Flow Duration Curve has limitations that it does not consider hydrologic persistence of daily discharge, that the daily discharge is greatly affected by the maximums or minimums, and that the date of occurrence and duration of a specific discharge cannot be known. In this study, we propose a Daily Mode Discharge Curve, which consists of aligning the daily discharge each year by the date of occurrence, calculating the daily mode discharge, and averaging them every 5 days. As a result of reviewing the long-term observational daily discharge data at 8 points upstream and downstream of the mainstream of the 4 major rivers in Korea, it was found that the daily discharge at all points shows hydrological persistence, and the distortion of it was alleviated by using Daily Mode Discharge Curve. We also suggest that the Daily Mode Discharge Curve is useful for utilizing reference discharge such as Drought, Low, Normal, Plentiful, and Flood Discharge.

Water footprint estimation of selected crops in Laguna province, Philippines

  • Salvador, Johnviefran Patrick;Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.294-294
    • /
    • 2022
  • In 2013, the Asian Development Bank classified the Philippines among the countries facing high food security risks. Evidence has suggested that climate change has affected agricultural productivity, and the effect of extreme climatic events notably drought has worsened each year. This had resulted in serious hydrological repercussions by limiting the timely water availability for the agriculture sector. Laguna is the 3rd most populated province in the country, and it serves as one of the food baskets that feed the region and nearby provinces. In addition to climate change, population growth, rapid industrialization, and urban encroachment are also straining the delicate balance between water demand and supply. Studies have projected that the province will experience less rainfall and an increase in temperature, which could simultaneously affect water availability and crop yield. Hence, understanding the composite threat of climate change for crop yield and water consumption is imperative to devise mitigation plans and judicious use of water resources. The water footprint concept elaborates the water used per unit of crop yield production and it can approximate the dual impacts of climate change on water and agricultural production. In this study, the water footprint (WF) of six main crops produced in Laguna were estimated during 2010-2020 by following the methodology proposed by the Water Footprint Network. The result of this work gives importance to WF studies in a local setting which can be used as a comparison between different provinces as well as a piece of vital information to guide policy makers to adopt plans for crop-related use of water and food security in the Philippines.

  • PDF

Implementation of ICT-based Real-time Hydrological Data Acquisition and Processing System for Scientific Water Management (과학적 물관리를 위한 ICT기반 실시간 수문정보시스템 구현)

  • Jang, Sung-Won;Jeong, Chang-wook;Jo, Kyoung-Hoon;Shin, Ji-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.303-305
    • /
    • 2022
  • In Korea, due to the geographical and hydrological characteristics of the country, the water cycle has a large variation throughout the year. Therefore, in order to quickly identify and prepare for hydrological phenomena such as floods and droughts, the need for scientific water management incorporating the latest ICT technologies is growing. Accordingly, K-water operates a real-time Hydrological Data Acquisition and Processing System (HDAPS) that can check the situation of the site more intuitionally by linking the hydrological data collected in real time through satellite, GIS, and CCTV. and prepared for flood and drought. In this paper, we will introduce K-water's real-time hydrological information system and consider its application to protect people's lives and property.

  • PDF

Climate-instigated disparities in supply and demand constituents of agricultural reservoirs for paddy-growing regions

  • Ahmad, Mirza Junaid;Cho, Gun-ho;Choi, Kyung-sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.516-516
    • /
    • 2022
  • Agricultural reservoirs are critical water resources structures to ensure continuous water supplies for rice cultivation in Korea. Climate change has increased the risk of reservoir failure by exacerbating discrepancies in upstream runoff generation, downstream irrigation water demands, and evaporation losses. In this study, the variations in water balance components of 400 major reservoirs during 1973-2017 were examined to identify the reservoirs with reliable storage capacities and resilience. A conceptual lumped hydrological model was used to transform the incident rainfall into the inflows entering the reservoirs and the paddy water balance model was used to estimate the irrigation water demand. Historical climate data analysis showed a sharp warming gradient during the last 45 years that was particularly evident in the central and southern regions of the country, which were also the main agricultural areas with high reservoir density. We noted a country-wide progressive increase in average annual cumulative rainfall, but the forcing mechanism of the rainfall increment and its spatial-temporal trends were not fully understood. Climate warming resulted in a significant increase in irrigation water demand, while heavy rains increased runoff generation in the reservoir watersheds. Most reservoirs had reliable storage capacities to meet the demands of a 10-year return frequency drought but the resilience of reservoirs gradually declined over time. This suggests that the recovery time of reservoirs from the failure state had increased which also signifies that the duration of the dry season has been prolonged while the wet season has become shorter and/or more intense. The watershed-irrigated area ratio (W-Iratio) was critical and the results showed that a slight disruption in reservoir water balance under the influence of future climate change would seriously compromise the performance of reservoirs with W-Iratio< 5.

  • PDF

Characteristics of Soybean Growth and Yield Using Precise Water Management System in Jeollanam-do

  • JinSil Choi;Dong-Kwan Kim;Shin-Young Park;Juhyun Im;Eunbyul Go;Hyunjeong Shim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2023.04a
    • /
    • pp.79-79
    • /
    • 2023
  • With the development of digital technology, the size of the smart agriculture market at home and abroad is rapidly expanding. It is necessary to establish a foundation for sustainable precision agriculture in order to respond to the aging of rural areas and labor shortages. This study was conducted to establish an automated digital agricultural test bed for soybean production management using data suitable for agricultural environmental conditions in Korea and to demonstrate the field of leading complexes. In order to manage water smartly, we installed a subsurface drip irrigation system in the upland field and an underground water level control system in the paddy field. Based on data collected from sensors, water management was controlled by utilizing an integrated control system. Irrigation was carried out when the soil moisture was less than 20%. For effective water management, soil moisture was measured at the surface, 15cm, and 30cm depth. The main growth characteristics and yield, such as stem length, number of branches, and number of nodes of the main stem, were investigated during the main growth period. During the operation of the test bed, drought appeared during the early vegetative growth period and maturity period, but in the open field smart agriculture test bed, water was automatically supplied, reducing labor by 53% and increasing yield by 2%. A test bed was installed for each field digital farming element technology, and it is planned to verify it once more this year. In the future, we plan to expand the field digital farming technology developed for leading farmers to the field.

  • PDF

Trend Analysis of Complex Disasters in South Korea Using News Data (뉴스데이터를 활용한 국내 복합재난 발생 동향분석)

  • Eun Hye Shin;Do Woo Kim;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.50-59
    • /
    • 2023
  • As the diversity of disasters continues to increase, the concept of "complex disasters" has gained prominence in various policies and studies related to disaster management. However, there has been a certain limitation in the availability of the systematic statistics or data in advancing policies and research initiatives related to complex disasters. This study aims to analyze the macro-level characteristics of the complex disasters that have occurred domestically utilizing a 30-year span of a news data. Initially, we categorize the complex disasters into the three types: "Natural disaster-Natural disaster", "Natural disaster-Social disaster", and "Social disaster-Social disaster". As a result, the "natural diaster-social disaster" type is the most prevalent. It is noted that "natual disaster-natural disaster" type has increased significantly in recent 10 years (2011-2020). In terms of specific disaster types, "Storm and Flood", "Collapse", "Traffic Accident", "National Infrastructure Paralysis", and "Fire⋅Explosion" occur the most in conjunction with other disasters in a complex manner. It has been observed that the types of disasters co-ocuuring with others have become more diverse over time. Parcicularly, in recent 10 years (2011-2020), in addition to the aforementioned five types, "Heat Wave", "Heavy Snowfall⋅Cold Wave", "Earthquake", "Chemical Accident", "Infectious Disease", "Forest Fire", "Air Pollution", "Drought", and "Landslide" have been notable for their frequent co-occurrence with other disasters. These findings through the statistical analysis of the complex disasters using long-term news data are expected to serve as crucial data for future policy development and research on complex disaster management.

Evaluation of Water Supply Stability for Upland Crop in Reservoir Irrigation Districts Using Resilience Indexes (레질리언스 지표를 이용한 저수지 수혜구역의 전작농지 용수공급 안정성 평가)

  • Park, Jinseok;Jang, Seongju;Lee, Hyeokjin;Shin, Hyungjin;Chung, Soo;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.25-37
    • /
    • 2024
  • As the agricultural land use shifts from paddy to upland, ensuring reservoir water supply stability for upland crop irrigation becomes essential. The objectives of this study were to estimate the irrigation water requirements considering the upland irrigation scenario and to evaluate the reliability of the water supply from the agricultural reservoir using resilience indexes. Two study sites, Sinheung and Hwajeong, were selected, and soybean and red peppers, the most water-intensive crops, were selected as study crops, respectively. For the irrigation scenario, two irrigation methods of traditional scheduling (which irrigates all sites at once) and rotational scheduling (which distributes irrigation by districts), along with the upland conversion rate, were considered. The net irrigation requirement was estimated through a water balance analysis. The stability of the reservoir was evaluated using resilience indexes based on the simulated 10-years reservoir water levels and drought criterion. Overall, the water supply of the reservoir was evaluated as stable during the simulated 10 years, except for the one year. Compared to the two irrigation methods, rotational scheduling resulted in lower irrigation water usage in both sites, with reductions of 1.6%, and 0.3%, respectively. As the upland conversion rate increases, the water deficit could be intensified in Hwajeong with a conversion rate exceeding 50%, showing the number of deficit(ND) over the one and a rapid increase in the deficit ratio(DR). It was confirmed that the reservoir operation criteria can be enhanced by incorporating resilience indicators along with crop growth information, thus, this will be a further study.

Analysis of the Impact of Heatwaves in Gwangju using Logistic Regression and Discriminant Analysis (로지스틱 회귀분석과 판별분석을 활용한 광주광역시의 폭염에 미치는 영향분석)

  • Youn Su Kim;Yeong Seon Kong;In Hong Chang
    • Journal of Integrative Natural Science
    • /
    • v.17 no.2
    • /
    • pp.33-41
    • /
    • 2024
  • Abnormal climate is a phenomenon in which meteorological factors such as temperature and precipitation are significantly higher or lower than normal, and is defined by the World Meteorological Organization as a 30-year period. However, over the past 30 years, abnormal climate phenomena have occurred more frequently around the world than in the past. In Korea, abnormal climate phenomena such as abnormally high temperatures on the Korean Peninsula, drought, heatwave and heavy rain in summer are occurring in March 2023. Among them, heatwaves are expected to increase in frequency compared to other abnormal climates. This suggests that heatwave should be recognised as a disaster rather than just another extreme weather event. According to several previous studies, greenhouse gases and meteorological factors are expected to affect heatwaves, so this paper uses logistic regression and discriminant analysis on meteorological element data and greenhouse gas data in Gwangju from 2008 to 2022. We analyzed the impact of heatwaves. As a result of the analysis, greenhouse gases were selected as effective variables for heatwaves compared to the past, and among them, chlorofluorocarbons were judged to have a stronger effect on heatwaves than other greenhouse gases. Since greenhouse gases have a significant impact on heatwaves, in order to overcome heatwaves and abnormal climates, greenhouse gases must be minimized to overcome heatwaves and abnormal climates.

Climate Change Impacts in Natural Resources and Livestock in Mongolia Climate

  • Batima, P.;Natsagdorj, L.;Bayarbaatar, L..;Bolortsetseg, B.;Natsagsuren, N.;Erdenetsetseg, B.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.103-104
    • /
    • 2004
  • This paper discuss some results of observed changes of meteorological elements as temperature, precipitation and some extreme indexes in Mongolia. Mongolia is one of the largest landlocked countries in the world. The climate is characterized by a long lasting cold winter, dry and hot summer, low precipitation, high temperature fluctuation and relatively high number of sunny days per year. During last 60 years the annual mean air temperature has risen $1.66^{\circ}C$. Intensive warming of > $2^{\circ}C$ was observed at higher altitudes of high mountains when warming of < $1^{\circ}C$ was observed the Domod steppe and the Gobi Desert. Heat Wave Duration have statistically significant risen trend with increaded number of days by 8-18 at significance level of 95-99.9% depending on geography and Cold Wave Duration have shortened by 13.3 days significance level of 95-99%. In general, by the amount of precipitation, Mongolia falls in semi-arid and arid region. It is 300-350 mm in the high mountain regions while it is only 50-150 mm in Gobi Desert regions. The changes of annual precipitation have very localized character i.e.decreasing at one site and increasing at a sit nearby. Annual precipitation decreased by 30-90 mm in the northern-central region and increased by 2-60 mm in the western and eastern region. The magnitude of alteration changes in precipitation regardless increasing or decreasing is 5-25%. A trends, significant at the level of 90%, found where changes are more than 40 mm or more than 15% of annual mean value. Moreover, the soil moisture resources was decreased in the last 40 years. Specially, moisture contents of the top soil have decreased 2 times(N. Natsagsuren, 2002). Months of June and July in Mongolia is the year that moisture is not inhibiting vegetation growth. Unfortunately, its also found that moisture in this time tends to decrease. Increased temperature, decreased precipitation and soil moisture are most likely resulted in occurences of more intense drought spells that have taken place during the recent years. Intimately, these changes have considerable impact on livestock in Mongolia.

  • PDF

Long-term Runoff Simulation Considering Water for Agricultural Use in Geum River Basin (농업용수 이용량을 고려한 금강유역 장기유출모의)

  • Woo, Dong-Hyeon;Lee, Sang-Jin;Kim, Joo-Cheol;An, Jung-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.349-355
    • /
    • 2010
  • This study aims at the augmentation of reliability of the long-term rainfall runoff model. To do so agricultural water uses are evaluated by analyzing the effects of small scale irrigational hydraulic structures on long term runoff processes and thereby rainfall-runoff model is modified considering them. As a result the simulation results of the sub-basins having more agricultural reservoirs than the others are disagreed with the observations. The 2nd quarter simulation results show similar trend to it. Especially the farming seasonal results of the drought year as the year of 2008 have many negative discharge values due to the lack of agricultural water uses. This result come from the water uses input data corresponding to not real water uses but water demands. In this study the formulas are derived to estimate the discharges and return ratios and the long term rainfall-runoff model is reformulated based on these. It is confirmed that the errors of the simulation results could be reduced by considering the effects of small scale irrigational hydraulic structures and the reliability of the simulation results improved greatly.