• Title/Summary/Keyword: drought planning

Search Result 107, Processing Time 0.023 seconds

A Basic Study on Establishment and Operation of Agricultural Water Saving Governance (농업용수 물절약 거버넌스 구축·운영 기초연구)

  • Lee, Seul-Gi;Choi, Kyung-Sook
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.3
    • /
    • pp.11-20
    • /
    • 2021
  • Recently, natural disasters caused by climate change have become more frequent across the world. Our country is also not exceptional, and it is urgent to come up with appropriate measures in the agricultural sector as the size and intensity of drought are becoming severe. Consequently, the Ministry of Agriculture and Food has continuously raised the need for efficient water management and governance to overcome the periodic drought. Thus, there is a need for water-saving education and water conservation governance for sustainable and efficient use of agricultural water. Governance is a cooperative mechanism involving various stakeholders, such as central, local, civil society, and businesses, to solve regional or social problems, with different definitions and concepts depending on the field or scope. In this study, we aim to present basis of a governance framework for direct water management participation involving the key agricultural water use stakeholders to imbibe the culture of water savings and conservation practices. Based on this, water-saving governance was established and operated in Gyeongju and Yeoju, in South Korea as a 'water conservation practice', while the water management status of local farmers, the reliability and importance of stakeholders, and the need for governance were investigated. The results indicate that the involvement of various stakeholders in the governance of water management yielded water-saving effects. This study provides the directions of making a framework for water-saving governance establishment and operation. It is expected that sustainable agricultural water use can be achieved in response to climate change if the governance builds and operates with agricultural water use stakeholders based on the continuous government supports.

Comparison of Water Infiltration and Retention Capacity in a Forest Soil of Different Surface Depression Patterns (지면 굴곡에 따른 산림 토양의 물 침투와 저류능력 비교)

  • Cho, Yoori;Kim, Jongho;Lee, Dowon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.1
    • /
    • pp.108-111
    • /
    • 2018
  • Increasing soil surface roughness can be effective in enhancing infiltration of rainfall and depression storage capacity of forest soil and reducing surface run-off. In this study, a forest slope with hemispherical depressions shows greater infiltration of water, whereas depression storage capacity is higher in soil with depressions perpendicular to a water flow pathway. Soil pitting or forming surface depressions can be used as a countermeasure after forest fires and a practical way to reduce drought stress of forest soil.

Evaluation of Sustainable Yield for a Small Rural Watershed (농촌 소유역의 지하수 지속가능개발량 평가)

  • Park, Ki-Jung;Chung, Sang-Ok
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.581-587
    • /
    • 2004
  • An experimental watershed was selected and sustainable yield was evaluated. The study area(3.89$\textrm{km}^2$) was located in Kyungpook Sangju Yangchon-dong. The visual MODFLOW was verified by comparing the observed and estimated groundwater table. The analysis of the observed and estimated groundwater table from 19 March 2003 to 18 March 2004 showed that the average error was 0.0009m, the error sum of squares 7.245$m^2$, absolute mean error 0.094 m, root mean square error 0.141m, and the model efficiency was 92%. The normal, 10- and 30- year drought frequency years were selected and sustainable yield was evaluated in these periods. Ratios of sustainable yield to the annual infiltration were 14.5% for the normal year(1992), 15.1% for the 10-year(1994), and 15.2% for the 30-year drought frequency year(1982). The results of this study can be used as a basic information for groundwater development and management planning considering regional characteristics.

A Study on the Resilient Supply of Agricultural Water in Jeju Island by Forecasting Future Demand (미래 수요예측을 통한 제주도 농업용수 회복탄력적 공급 방안에 관한 연구)

  • Go, Jea-han;Jeung, Minhyuk;Beom, Jina;Sung, Mu-hong;Jung, Hyoung-mo;Yoo, Seung-hwan;Yoon, Kwang-sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.71-83
    • /
    • 2020
  • Resilience is the capacity to maintain essential services under a range of circumstances from normal to extreme. It is achieved through the ability of assets, networks, systems and management to anticipate, absorb and recover from disturbance. It requires adaptive capacity in respect of current and future risks and uncertainties as well as experience to date. The agricultural infrastructures with high resilience can not only reduce the size of the disaster relatively, but also minimize the loss by reducing the time required for recovery. This study aims to evaluate the most suitable drought countermeasures with the analysis of various resilience indices by predicting future agricultural water shortage under land use and climate change scenarios for agricultural areas in Jeju Island. The results showed that the permanent countermeasure is suitable than the temporary countermeasures as drought size and the cost required for recovery increase. Wide-area water supply system, which is a kind of water grid system, is identified as the most advantageous among countermeasures. It is recommended to evaluate the capability of agricultural infrastructure against drought with the various Resilience Indices for reliable assessment of long-term effect.

Effective Use of Water Resource Through Conjunctive Use - (1) The Methodology (지표수-지하수를 연계한 수자원이 효율적 이용 - (1) 방법론)

  • Lee, Sang-Il;Kim, Byeong-Chan;Kim, Su-Min
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.789-798
    • /
    • 2004
  • Conjunctive use of surface and ground water is emerging as an alternative to resolve water shortage problems caused by drought or overpopulation. The region whose water supply depends on a single source has high risk of emergency situations, and may need to consider conjunctive use to overcome its weakness. Conjunctive use also can be a realistic and effective solution when additional or new water resources are to be developed. This paper presents a new methodology for managing surface and ground water resources with the aim of supplying water in a sustainable way. The developed method encompasses procedures to assess site suitability for conjunctive use, to devise water supply scenarios based on drought analysis, and to quantify the amount of water attained. It is believed that the systematic and objective features of the developed method enable it to be a useful supportive tool for water management planning and decision-making.

Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping (경험적 분위사상법을 이용한 지역기후모형 기반 미국 강수 및 가뭄의 계절 예측 성능 개선)

  • Song, Chan-Yeong;Kim, So-Hee;Ahn, Joong-Bae
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.637-656
    • /
    • 2021
  • The United States has been known as the world's major producer of crops such as wheat, corn, and soybeans. Therefore, using meteorological long-term forecast data to project reliable crop yields in the United States is important for planning domestic food policies. The current study is part of an effort to improve the seasonal predictability of regional-scale precipitation across the United States for estimating crop production in the country. For the purpose, a dynamic downscaling method using Weather Research and Forecasting (WRF) model is utilized. The WRF simulation covers the crop-growing period (March to October) during 2000-2020. The initial and lateral boundary conditions of WRF are derived from the Pusan National University Coupled General Circulation Model (PNU CGCM), a participant model of Asia-Pacific Economic Cooperation Climate Center (APCC) Long-Term Multi-Model Ensemble Prediction System. For bias correction of downscaled daily precipitation, empirical quantile mapping (EQM) is applied. The downscaled data set without and with correction are called WRF_UC and WRF_C, respectively. In terms of mean precipitation, the EQM effectively reduces the wet biases over most of the United States and improves the spatial correlation coefficient with observation. The daily precipitation of WRF_C shows the better performance in terms of frequency and extreme precipitation intensity compared to WRF_UC. In addition, WRF_C shows a more reasonable performance in predicting drought frequency according to intensity than WRF_UC.

EU Water Framework Directive-River Basin Management Planning in Ireland

  • Earle, R.;Almeida, G.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.105-109
    • /
    • 2010
  • The European Union (EU) Water Framework Directive (WFD) (2000/60/EC) was transposed into Irish law by Statutory Instrument Nos. 722 of 2003, 413 of 2005 and 218 of 2009, which set out a new strategy and process to protect and enhance Ireland's water resources and water-dependent ecosystems. The Directive requires a novel, holistic, integrated, and iterative process to address Ireland's natural waters based on a series of six-year planning cycles. Key success factors in implementing the Directive include an in-depth and balanced treatment of the ecological, economic, institutional and cultural aspects of river basin management planning. Introducing this visionary discipline for the management of sustainable water resources requires a solemn commitment to a new mindset and an overarching monitoring and management regime which hitherto has never been attempted in Ireland. The WFD must be implemented in conjunction with a myriad of complimentary directives and associated legislation, addressing such key related topics as flood/drought management, biodiversity protection, land use planning, and water/wastewater and diffuse pollution engineering and regulation. The critical steps identified for river basin management planning under the WFD include: 1) characterization and classification of water bodies (i.e., how healthy are Irish waters?), 2) definition of significant water pressures (e.g., agriculture, forestry, septic tanks), 3) enhancement of measures for designated protected areas, 4) establishment of objectives for all surface and ground waters, and 5) integrating these critical steps into a comprehensive and coherent river basin management plan and associated programme of measures. A parallel WFD implementation programme critically depends on an effective environmental management system (EMS) approach with a plan-do-check-act cycle applied to each of the evolving six-year plans. The proactive involvement of stakeholders and the general public is a key element of this EMS approach.

A Study on Analysis of Damaged Facilities in Rural Area by Storm and Flood Hazard (풍수해에 의한 농촌지역 피해시설 현황 분석)

  • Lim, Chang-Su;Oh, Yun-Kyung;Lee, Seung Chul;Kim, Eun-Ja;Choi, Jin-Ah
    • Journal of Korean Society of Rural Planning
    • /
    • v.22 no.2
    • /
    • pp.19-29
    • /
    • 2016
  • Disasters that occur most frequently in rural areas are drought, flood, damages from wind and cold weather. Among these, damages from storm and flood and drought are the main disasters and recently, these are occurring on a large scale due to unusual weather conditions. Under such circumstances, projects and researches on disasters in rural areas are under way but they are mostly targeting one area or making approaches focusing on repair facilities, maintenance project of facilities in small streams, and disaster management, so there have not been enough studies on the current status of overall damaged facilities in the rural areas. Against this backdrop, through the analysis of the current status of damaged facilities due to storm and flood in rural areas, this study aims to provide base data for policies needed for disaster recovery planning and maintenance work of rural areas. For the analysis of damaged facilities due to storm and flood in rural areas, using the annual report on disasters issued by Ministry of Public Safety and Security and based on the occurrence rate of estimated damage in each city and district for the past 10 years(2004~2013), 8 areas with the highest number of occurrence and cost of damage were found from each province and target areas were selected. Then, regarding the selected target areas, the General Plan for Reducing Damages from Storm and Flood, which is the report on top-level plan for preventing disasters, was secured and the current status of damaged facilities were analyzed. After organizing the analysis of current status, the tendency of damaged facilities due to storm and flood in rural areas, the items of damaged facilities depending on the types of storm and flood damages, and risk factors were suggested. Based on this result, in order to generalize the results of follow-up researches, it is thought that disaster recovery planning and establishing the system of remodeling items necessary for maintenance work would be possible by analyzing damage investigation items recorded in additional researches on rural areas, researches on natural disasters, and recovery plan instructions and by conducting on-site investigation on the damaged villages from storm and flood in rural areas.

Development and Implementation of Prototype for Intelligent Integrated Agricultural Water Management Information System and Service including Reservoirs managed by City and County (시군관리 저수지를 고려한 지능형 통합 물관리정보시스템 원형 개발 및 구현)

  • Kim, Dae-Sik;Kang, Seok-Man;Kim, Jin-Taek;Kim, Jeong-Dae;Kim, Hyun-Ho;Jang, Jin-Uk
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.3
    • /
    • pp.163-174
    • /
    • 2017
  • This study developed the prototype of the system and implemented its main functions, which is the intelligent integrated agricultural water management information system and service (IaWAMISS). The developed system was designed to be able to collect, process and analyze the agricultural water information of spatially dispersed reservoirs in whole country and spatial geographic information distributed in various systems of other organizations. The system, IaWAMISS, is also possible to provide the reproduced information services in each reservoir and space units, such as agricultural water demand and supply analysis and drought prediction, to the people, experts, and policy makers. This study defined the 6 step modules to develop the system, which are to design the components of intelligent integrated information system, to derive the utilization contents of existing systems, to design the new development elements for IaWAMISS, to design the reservoir information system can be used by managers of city and county, to designate the monitoring reservoirs managed by city and county, and finally to prepare the sharing system between organizations with the existing information systems. In order to implement the prototype of the system, this study shows the results for three important functions of the system: spatial integration of reservoirs' information, data link integration between the existing systems, and intelligent analysis program development to assist decision support for agricultural water management. For the spatial integration with the reservoir water information of the Korea Rural Community Corporation, this study get IaWAMISS to receive the real-time reservoir storage information from the measurement facility installed in the municipal management reservoir. The data link integration connecting databases of the existing systems, was implemented by integrating the meteorological information of the Korea Meteorological Administration with IaWAMISS, so that the rainfall forecast data could be derived and used. For the implementation of the intelligent analysis program, this study also showed the results of analysis and prediction of agricultural water demand and supply amount, estimation of Palmer drought index, analysis of flood risk area in typhoon course region, and analysis of the storage status of reservoirs related to each storm. This study confirmed the possibility and efficiency of an useful system development through the prototype design and implementation of IaWAMISS. By solving the preliminary 6 step modules presented in this study, it is possible not only to efficiently manage water by spatial unit, but also to provide the service of information and to enhance the relevant policy and national understanding to the people.

An Analysis of Historical Precipitation data for Water Resources Planning (수자원 계획을 위한 과거 강수량자료의 분석)

  • 이동률;홍일표
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.71-82
    • /
    • 1994
  • A statistical characteristics, relations of calendar and water year, and frequencies of precipitaion which are necessary for water resources planning were analyzed with long historical data(1905-1991 years). And the analysis of precipitation of the drought periods in 1967-1968 years was carried out. The study basins are the five major rivers in Korea. As a results of this study, annual precipitation shows an increasing trend but its variation has no statistical significance. The rellations of calendar and water year precipitation is presented, it shows that there are little difference of the total precipitation between them. The annual minimum series of total precipitation for the periods of 3, 6, 9, and 12 months by water year are constructed, and frequency precipitation for each periods using 2-parameter lognormal distribution is presented. The analysis of the precipitation in 1967-1968 years shows in a natural river basins that it would be a moderate drought, if dry seasons(Oct-May) or wet seasons(Jun-Sep) has 75 percents of historical mean precipitation of the same periods. And if it has less than 60 percents of historical mean precipitation, it would be a severe drought.

  • PDF