• Title/Summary/Keyword: drought index

Search Result 522, Processing Time 0.032 seconds

Development of Evaluation System for Agricultural Drought Management (농업가뭄 분석을 위한 농업가뭄평가.정보제공시스템 개발)

  • Park, Ki-Wook;Kim, Jin-Taek;Cheong, Byung-Ho
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.7-13
    • /
    • 2005
  • There are two ways to mitigate the drought. One is the structural measures such as storage of irrigation water, development of emergency wells, etc. The other one is the nonstructural measures such as water saving management by the early warning system. To precast and evaluate the drought, we need to develop the drought indices for agriculture. In the present drought preparedness plans of Ministry of Agriculture and Forestry (MAF), it is prescribed that the preparedness levels should be classified by considering the precipitation, reservoir storage, soil moisture in paddy and upland, and the growing status of crops. However there are not clear quantitative criteria for consistent judgment. This shows that we have not selected and utilized the proper drought index for agriculture and we did not have the information system to calculate the drought indices periodically and warn the outbreak of the drought. The objectives of the study are to develope of Agricultural Drought Evaluation System and to evaluate this indices for current agricultural status using the system.

  • PDF

Development of a surrogate model based on temperature for estimation of evapotranspiration and its use for drought index applicability assessment (증발산 산정을 위한 온도기반의 대체모형 개발 및 가뭄지수 적용성 평가)

  • Kim, Ho-Jun;Kim, Kyoungwook;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.969-983
    • /
    • 2021
  • Evapotranspiration, one of the hydrometeorological components, is considered an important variable for water resource planning and management and is primarily used as input data for hydrological models such as water balance models. The FAO56 PM method has been recommended as a standard approach to estimate the reference evapotranspiration with relatively high accuracy. However, the FAO56 PM method is often challenging to apply because it requires considerable hydrometeorological variables. In this perspective, the Hargreaves equation has been widely adopted to estimate the reference evapotranspiration. In this study, a set of parameters of the Hargreaves equation was calibrated with relatively long-term data within a Bayesian framework. Statistical index (CC, RMSE, IoA) is used to validate the model. RMSE for monthly results reduced from 7.94 ~ 24.91 mm/month to 7.94 ~ 24.91 mm/month for the validation period. The results confirmed that the accuracy was significantly improved compared to the existing Hargreaves equation. Further, the evaporative demand drought index (EDDI) based on the evaporative demand (E0) was proposed. To confirm the effectiveness of the EDDI, this study evaluated the estimated EDDI for the recent drought events from 2014 to 2015 and 2018, along with precipitation and SPI. As a result of the evaluation of the Han-river watershed in 2018, the weekly EDDI increased to more than 2 and it was confirmed that EDDI more effectively detects the onset of drought caused by heatwaves. EDDI can be used as a drought index, particularly for heatwave-driven flash drought monitoring and along with SPI.

Development of A Single Reservoir Agricultural Drought Evaluation Model for Paddy (단일저수지 농업가뭄평가모형의 개발)

  • Chung, Ha-Woo;Choi, Jin-Yong;Park, Ki-Wook;Bae, Seung-Jong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.17-30
    • /
    • 2004
  • This study aimed to develop an agricultural drought assessment methodology for irrigated paddy field districts from a single reservoir. Agricultural drought was defined as the reservoir storage shortage state that cannot satisfy water requirement from the paddy fields. The suggested model, SRADEMP (a Single Reservoir Agricultural Drought Evaluation Model for Paddy), was composed of 4 submodels: PWBM (Paddy Water Balance Model), RWBM (Reservoir Water Balance Model), FA (Frequency and probability Analysis model), and DCI (Drought Classification and Indexing model). Two indices, PDF (Paddy Drought Frequency) and PDI (Paddy Drought Index) were also introduced to classify agricultural drought severity Both values were divided into 4 steps, i.e. normal, moderate drought, severe drought, and extreme drought. Each step of PDI was ranged from +4.2 to -1.39, from -1.39 to -3.33, from -3.33 to -4.0 and less than -4.0, respectively. SRADEMP was applied to Jangheung reservoir irrigation district, and the results showed good relationships between simulated results and the observed data including historical drought records showing that SRADEMP explains better the drought conditions in irrigated paddy districts than PDSI.

Spatial Analysis of Drought Characteristics in Korea Using Cluster Analysis (군집분석을 이용한 우리나라 가뭄특성의 공간적 분석)

  • Yoo, Ji-Young;Choi, Min-Ha;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.15-24
    • /
    • 2010
  • Regional frequency analysis is often used to overcome the limitation of point frequency analysis to estimate probability rainfall depths. However, point frequency analysis is still used in drought analyses. This study proposed a practical method to categorize the homogeneous regions of drought characteristics for the analyses of regional characteristics of droughts in Korea. Using rainfall data from 58 observation stations managed by the Korea Meteorological Administration, this study calculated drought attributes, i.e., mean drought indices for various durations using the Standardized Precipitation Index (SPI) and drought severities expressed by durations, depth, and intensity. The drought attributes provided useful information for categorizing stations into the hydrological homogeneous regions. This study introduced a cluster analysis with K-means techniques to group observation stations. The cluster analysis grouped observation stations into 6 regions in Korea. The data in the hydrological homogeneous region would be used in spatial analysis of drought characteristics and drought regional frequency analysis.

Probabilistic evaluation of ecological drought in forest areas using satellite remote sensing data (인공위성 원격 감지 자료를 활용한 산림지역의 생태학적 가뭄 가능성에 대한 확률론적 평가)

  • Won, Jeongeun;Seo, Jiyu;Kang, Shin-Uk;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.9
    • /
    • pp.705-718
    • /
    • 2021
  • Climate change has a significant impact on vegetation growth and terrestrial ecosystems. In this study, the possibility of ecological drought was investigated using satellite remote sensing data. First, the Vegetation Health Index was estimated from the Normalized Difference Vegetation Index and Land Surface Temperature provided by MODIS. Then, a joint probability model was constructed to estimate the possibility of vegetation-related drought in various precipitation/evaporation scenarios in forest areas around 60 major ASOS sites of the Meteorological Administration located throughout Korea. The results of this study show the risk pattern of drought related to forest vegetation under conditions of low atmospheric moisture supply or high atmospheric moisture demand. It also identifies the sensitivity of drought risks associated with forest vegetation under various meterological drought conditions. These findings provide insights for decision makers to assess drought risk and develop drought mitigation strategies related to forest vegetation in a warming era.

Short Term Drought Forecasting using Seasonal ARIMA Model Based on SPI and SDI - For Chungju Dam and Boryeong Dam Watersheds - (SPI 및 SDI 기반의 Seasonal ARIMA 모형을 활용한 가뭄예측 - 충주댐, 보령댐 유역을 대상으로 -)

  • Yoon, Yeongsun;Lee, Yonggwan;Lee, Jiwan;Kim, Seongjoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.61-74
    • /
    • 2019
  • In this study, the SPI (Standardized Precipitation Index) of meteorological drought and SDI (Streamflow Drought Index) of hydrological drought for 1, 3, 6, 9, and 12 months duration were estimated to analyse the characteristics of drought using rainfall and dam inflow data for Chungju dam ($6,661.8km^2$) with 31 years (1986-2016) and Boryeong dam ($163.6km^2$) watershed with 19 years (1998-2016) respectively. Using the estimated SPI and SDI, the drought forecasting was conducted using seasonal autoregressive integrated moving average (SARIMA) model for the 5 durations. For 2016 drought, the SARIMA had a good results for 3 and 6 months. For the 3 months SARIMA forecasting of SPI and SDI, the correlation coefficient of SPI3, SPI6, SPI12, SDI1, and SDI6 at Chungju Dam showed 0.960, 0.990, 0.999, 0.868, and 0.846, respectively. Also, for same duration forecasting of SPI and SDI at Boryeong Dam, the correlation coefficient of SPI3, SPI6, SDI3, SDI6, and SDI12 showed 0.999, 0.994, 0.999, 0.880, and 0.992, respectively. The SARIMA model showed the possibility to provide the future short-term SPI meteorological drought and the resulting SDI hydrological drought.

Application of SAD Curves in Assessing Climate-change Impacts on Spatio-temporal Characteristics of Extreme Drought Events (극한가뭄의 시공간적 특성에 대한 기후변화의 영향을 평가하기 위한 SAD 곡선의 적용)

  • Kim, Hosung;Park, Jinhyeog;Yoon, Jaeyoung;Kim, Sangdan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.561-569
    • /
    • 2010
  • In this study, the impact of climate change on extreme drought events is investigated by comparing drought severity-area-duration curves under present and future climate. The depth-area-duration analysis for characterizing an extreme precipitation event provides a basis for analysing drought events when storm depth is replaced by an appropriate measure of drought severity. In our climate-change impact experiments, the future monthly precipitation time series is based on a KMA regional climate model which has a $27km{\times}27km$ spatial resolution, and the drought severity is computed using the standardized precipitation index. As a result, agricultural drought risk is likely to increase especially in short duration, while hydrologic drought risk will greatly increase in all durations. Such results indicate that a climate change vulnerability assessment for present water resources supply system is urgent.

Estimation and assessment of natural drought index using principal component analysis (주성분 분석을 활용한 자연가뭄지수 산정 및 평가)

  • Kim, Seon-Ho;Lee, Moon-Hwan;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.565-577
    • /
    • 2016
  • The objective of this study is to propose a method for computing the Natural Drought Index (NDI) that does not consider man-made drought facilities. Principal Component Analysis (PCA) was used to estimate the NDI. Three monthly moving cumulative runoff, soil moisture and precipitation were selected as input data of the NDI during 1977~2012. Observed precipitation data was collected from KMA ASOS (Korea Meteorological Association Automatic Synoptic Observation System), while model-driven runoff and soil moisture from Variable Infiltration Capacity Model (VIC Model) were used. Time series analysis, drought characteristic analysis and spatial analysis were used to assess the utilization of NDI and compare with existing SPI, SRI and SSI. The NDI precisely reflected onset and termination of past drought events with mean absolute error of 0.85 in time series analysis. It explained well duration and inter-arrival time with 1.3 and 1.0 respectively in drought characteristic analysis. Also, the NDI reflected regional drought condition well in spatial analysis. The accuracy rank of drought onset, termination, duration and inter-arrival time was calculated by using NDI, SPI, SRI and SSI. The result showed that NDI is more precise than the others. The NDI overcomes the limitation of univariate drought indices and can be useful for drought analysis as representative measure of different types of drought such as meteorological, hydrological and agricultural droughts.

Probabilistic Assessment of Hydrological Drought Using Hidden Markov Model in Han River Basin (은닉 마코프 모형을 이용한 한강유역 수문학적 가뭄의 확률론적 평가)

  • Park, Yei Jun;Yoo, Ji Young;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.435-446
    • /
    • 2014
  • Various drought indices developed from previous studies can not consider the inherent uncertainty of drought because they assess droughts using a pre-defined threshold. In this study, to consider inherent uncertainty embedded in monthly streamflow data, Hidden Markov Model (HMM) based drought index (HMDI) was proposed and then probabilistic assessment of hydrologic drought was performed using HMDI instead of using pre-defined threshold. Using monthly streamflow data (1966~2009) of Pyeongchang river and Upper Namhan river provided by Water Management Information System (WAMIS), applying the HMM after moving-averaging the data with 3, 6, 12 month windows, this study calculated the posterior probability of hidden state that becomes the HMDI. For verifying the method, this study compared the HMDI and Standardized Streamflow Index (SSI) which is one of drought indices using a pre-defined threshold. When using the SSI, only one value can be used as a criterion to determine the drought severity. However, the HMDI can classify the drought condition considering inherent uncertainty in observations and show the probability of each drought condition at a particular point in time. In addition, the comparison results based on actual drought events occurred near the basin indicated that the HMDI outperformed the SSI to represent the drought events.

ANALYSIS OF DROUGHT PHENOMENA USING MODIS NORMALIZED DIFFERENCE VEGETATION INDEX AND LAND SURFACE TEMPERATURE PRODUCTS

  • Park Jung-Sool;Kim Kyung-Tak;Lee Kyo-Sung;Kim Joo-Hun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.193-196
    • /
    • 2005
  • As global warming proceeds, South Eastern Asia is undergoing drought, and the harshness of drought in the middle area of Korea is increasing. Especially, there has been the worst spring drought in 2001 since the first meteorological observation, and the damages caused by that drought are being ana lysed in various ways. In this study, spectral indices derived from satellites are used to examine 2001 spring drought, and the application of MODIS Data products as the quantitative tool to analyse drought in the future is examined.

  • PDF