• Title/Summary/Keyword: droplet size distribution

Search Result 189, Processing Time 0.033 seconds

Estimation of FDS Prediction Performance on the Operation of Water-Mist (미세물분무 작동에 대한 FDS 예측 성능 평가)

  • Ko, Gwon Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4809-4814
    • /
    • 2014
  • The aim of the present study was to estimate the prediction performance of a FDS (Fire Dynamic Simulator) to simulate the fire behaviors and suppression characteristics by operating a water-mist. Rosin-Rammler/log-normal distribution function was used to determine the initial droplet distribution of water-mist and the effects of its model constant were considered. In addition, the simulation models were validated by a comparison of the predicted fire suppression characteristics with water-mist injection pressures to the previous experiments, and the thermal flow behaviors and gaseous concentration variations were analyzed. The results showed that water-mists with the same mean diameter were affected by the characteristics of the droplet size distribution, which have different size and velocity distributions at the downstream location. The fire simulations conducted in this study determine the initial droplet size distribution tuned to the base of the spray characteristics measured by previous experiments. The simulation results showed good agreement with the previous measurements for temperature variations and fire suppression characteristics. In addition, it was confirmed that the FDS simulation with a water-mist operation supplies useful details on estimations of the thermal flow fields and gaseous concentration under water mist operation conditions.

Machine Vision Instrument to Measure Spray Droplet Sizes (기계시각을 이용한 분무입자크기 측정)

  • Jeon, Hong-Young;Tian, Lei
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.443-449
    • /
    • 2010
  • A machine vision-based instrument to measure a droplet size spectrum of a spray nozzle was developed and tested to evaluate its accuracy on measuring spray droplet sizes and classifying nozzle sizes. The instrument consisted of a machine vision, light emitting diode (LED) illumination and a desktop computer. The illumination and machine vision were controlled by the computer through a C++ program. The program controlled the machine vision to capture droplet images under controlled illumination, and processed the droplet images to characterize the droplet size distribution of a spray nozzle. An image processing algorithm was developed to improve the accuracy of the system by eliminating random noise and out-of-focus droplets in droplet images while measuring droplet sizes. The instrument measured sizes of the three different balls (254.0, 497.8 and $793.8\;{\mu}m$) and the measurement ranges were $241.2-273.6\;{\mu}m$, $492.9-529.6\;{\mu}m$ and $800.8-824.1\;{\mu}m$ for 254.0-, 497.84- and $793.75-\;{\mu}m$ balls, respectively. Error of the measured droplet mean was less than 3.0 %. Droplet statistics, $D_{V0.1}$, $D_{V0.5}$ and $D_{V0.9}$, of a reference nozzle set were measured, and droplet size spectra of five spray nozzles covering from very fine to extremely coarse were measured to classify spray nozzle sizes. Ninety percent of the classification results of the instrument agreed with manufacturer's classification. A comparison study was carried out between developed and commercial instruments, and measurement results of the developed instrument were within 20 % of commercial instrument results.

Analyzing the Spray-to-spray Interaction of GDI Injector Nozzle in the Near-field Using X-ray Phase-Contrast Imaging (X선 위상차 가시화 기법을 이용한 GDI 인젝터 노즐 근방의 분무 간 상호간섭 해석)

  • Bae, Gyuhan;Moon, Seoksu
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.60-67
    • /
    • 2020
  • Despite its benefit in engine thermal efficiency, gasoline-direct-injection (GDI) engines generate substantial particulate matter (PM) emissions compared to conventional port-fuel-injection (PFI) engines. One of the reasons for this is that the spray collapse caused by the spray-to-spray interaction forms the locally rich fuel-air mixture and increases the fuel wall film. Previous studies have investigated the spray collapse phenomenon through the macroscopic observation of spray behavior using laser optical techniques, but it is somewhat difficult to understand the interaction between sprays that is initiated in the near-nozzle region within 10 mm from the nozzle exit. In this study, the spray structure, droplet size and velocity data were obtained using an X-ray imaging technique from the near-nozzle to the downstream of the spray to investigate the spray-to-spray interaction and discuss the effects of spray collapse on local droplet size and velocity distribution. It was found that as the ambient density increases, the spray collapse was promoted due to the intensified spray-to-spray interaction, thereby increasing the local droplet size and velocity from the near-nozzle region as a result of droplet collision/coalescence.

An Experimental Study on the Effect of Electrohydrodynamic Monodisperse Atomization According to Nozzle Characteristics (노즐 특성에 따른 전기수력학적 단분산 미립화 효과에 관한 실험적 연구)

  • Sung, K.A.;Lee, C.S.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.18-31
    • /
    • 2005
  • This study was performed to explore the liquid breakup and atomization characteristics for the classification of drop formation mode and background of uniform droplets generation in electrohydrodynmaic atomization according to the change of experimental parameters such as nozzle material (stainless steel. teflon). fluid flow rate, applied electrical field and intensity, and frequency. In results, from the classification map of drop formation modes according to the variation of applied AC voltage and frequency at a stainless nozzle, the droplet size was smaller than the outer diameter of the nozzle tip relatively in the spindle mode. The transition points became clearly to be moved toward the high applied voltage by rising the applied AC frequency beyond 450Hz. Also the droplet radius can be observed quite small in the frequency bandwidth of $350{\sim}450Hz$. The droplet radiuses decrease as the applied voltage increases for a fixed applied AC frequency within the range from 50Hz to 400Hz Over 400Hz, the relation between the power intensity and the droplet size was not consistent with a continuous mechanism of liquid breakup. Thus, it is showed that the droplet size distribution using the teflon nozzle was analogous to the results of stainless steel, but the droplet size was bigger than that of stainless steel relatively in case of a teflon nozzle.

  • PDF

Application of Fluorescence/Scattering Technique to the Measurement of Spray Droplet Size in GDI Injector (직접 분사식 가솔린 인젝터 분무의 입경 측정에 형광/산란광법의 적용)

  • Kwak, Soo-Min;Ryu, Kyeong-Hun;Choi, Bong-Seok;Kim, Duck-Jool
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.353-358
    • /
    • 2000
  • To achieve the requirement for high fuel economy and low emissions, the research for GDI engines is recently very brisk in the whole world. This study was performed to measure distribution of average particle size in non-evaporating spray. The 2-D fluorescence/scattering images of fuel spray were captured simultaneously by visualization system composed of a laser sheet, a doubling prism, optical filters, and an ICCD camera. Using the ratio of the two light intensities, particle size distribution was obtained. The SMD measured by fluorescence/scattering technique was compared with it obtained by PDA. The experimental results show that the spray structure of GDI injector and temporal SMD distribution.

  • PDF

Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles (대기 정체와 수용성 에어로졸 입자의 질량크기분포의 관계)

  • Park, Seungshik;Yu, Geun-Hye
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.418-429
    • /
    • 2018
  • Measurements of 24-hr size-segregated ambient particles were made at an urban site of Gwangju under high pressure conditions occurred in the Korean Peninsula late in March 2018. The aim of this study was to understand the effect of air stagnation on mass size distributions and formation pathways of water-soluble organic and inorganic components. During the study period, the $NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$, water-soluble organic carbon (WSOC), and humic-like substances(HULIS) exhibited mostly bi-modal size distributions peaking at 1.0 and $6.2{\mu}m$, with predominant droplet modes. In particular, outstanding droplet mode size distributions were observed on March 25 when a severe haze occurred due to stable air conditions and long range transport of aerosol particles from northeastern regions of China. Air stagnation conditions and high relative humidity during the study period resulted in accumulation of primary aerosol particles from local emission sources and enhanced formation of secondary ionic and organic aerosols through aqueous-phase oxidations of $SO_2$, $NO_2$, $NH_3$, and volatile organic compounds, leading to their dominant droplet mode size distributions at particle size of $1.0{\mu}m$. From the size distribution of $K^+$ in accumulation mode, it can be inferred that in addition to the secondary organic aerosol formations, accumulation mode WSOC and HULIS could be partly attributed to biomass burning emissions.

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (수직분사제트에서 액적크기특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-63
    • /
    • 2006
  • A direct photograph measurement technique was used to determine the spatial distribution of the spray droplet diameter in subsonic crossflow and it also obtain that SMD distribution by using PLLIF technique. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of this research are getting a droplet distribution and drop size measurement of normal flow and compare with the other flow effects. Although the study showed visually that drop size were spatially dependent of Air-stream velocity, fuel injection velocity, and normalized distance from the injector exit length.(x/d, y/d) There are also difference characteristics between cavitation, hydraulic flip and the normal flow.

  • PDF

Size Distribution of Droplets Sprayed by an Orchard Sprayer (과수방제기 살포입자의 직경 분포특성)

  • 구영모;신범수;김상헌
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.431-440
    • /
    • 2001
  • Generated agri-chemical droplets by orchard sprayers are evaporated regenerated and transported along wind streams. The droplets are deposited to targets after changing their sizes, affecting the retention of droplets. An orchard sprayer, designed for spraying grapevines was studied on the spatial distribution of droplet size. The experimental variables were spray direction (0, 22.5, 45, 67.5 and 90˚), distance(2.5, 3.0 and 3.5 m) and fan speed (2,075 and 3,031 rpm). Droplet sizes were converted and analyzed from spray stains, sampled using water sensitive papers. The number median diameter (NMD) increased with an increase of the distance due to disappeared fine droplets (<50 ㎛): however, the volume median diameter (VMD) decreased due to shrunken large droplets (>100 ㎛). Fast fan speed delivered large droplets to 3.5 m, but the spatial distributions of NMD and VMD were not uniform. Slower fan speed decreased the possibility of evaporation and drift; therefore, plenty of droplets were maintained up to 3.0 m. The upward blasting distance was limited within 3 m, but the limit to the ground level was extended to 3.5 m. Concentrated wind and droplets to the ground level should be redistributed to upper canopy direction, leading more uniform deposits. High speed wind and system pressure should be avoided because of generating fine droplets, which would be disappeared and drifted away.

  • PDF

Development of Droplet Sizing Technique in Spay Flow (분무유동에서 입경 계측기법의 개발)

  • Yang, Chang-Jo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • Recently, fire extinguishing systems based on water mists have been attracting public attentions in marine engineering. Performance of fire extinguishing systems is very strongly influenced by the size and distribution of spayed water mists. Therefore, the present study has developed droplet analyzing method based on image processing. The morphological technique based on partial curvature information of pre-processed images with relaxation method was adopted for recognition and separation of overlapped particles. Tested results showed that the present method may be reliable for the analysis of the size and distribution of droplets in spray flow of fire extinguishing systems based water mists.

A Study on the Performance of Diesel Automobile of Ultrasonic Fuel Supply System(I) -About the Droplet Size Distribution of Ultrasonic Fuel Supply System - (초음파(超音波) 연료공급장치용(燃料供給裝置用) 디젤자동차(自動車)의 성능(性能) 향상(向上) 관한 연구(I) -초음파 연료공급장치를 통과한 연료의 분무특성에 대하여-)

  • Choi, D.S.;Seol, J.H.;Ryu, J.I.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1994
  • This study carried out to investigate the spray characteristics of diesel oil through out ultrasonic fuel supply system in comparison with conventional. Size of the droplets comprising diesel spray was measured by immersed liquid method at different positions along the spray axis. Droplets distribution diagram was ploted and Sauter Mean Diameter(SMD) was also calculated. The effects of the ultrasonic vibration and injection pressure on the droplet size distribution and SMD were investigated. As the ultrasonic vibration supply SMD decreases on the same injection pressure conditions with conventional injector's. But the effect of ultrasonic vibration decreases with injection pressure increasing.

  • PDF