• Title/Summary/Keyword: droop compensator

Search Result 5, Processing Time 0.017 seconds

Long-Pulse Modulator for Klystron using a High-Voltage Solid-State Switch and a Droop Compensator

  • Vo, Nguyen Qui Tu;Kim, Young-Woo;Lee, Chang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.186-187
    • /
    • 2013
  • The paper presents a long-pulse modulator for klystron using a high-voltage solid-state switch and a droop compensator. The modulator guarantees the safe of klystron by limiting the amount of energy transferred to klystron in case of arc. The high performance of the modulator is also achieved by the fast transition time, high flatness and average power. The proposed prototype has produced pulses with a flat-top voltage -90[kV], pulse width 1ms and pulse frequency 200[Hz]. The validity of the long-pulse modulator for klystron has been verified by the simulation and experimental works.

  • PDF

Double-Sharpened Decimation Filter Employing a Pre-droop Compensator for Multistandard Wireless Applications

  • Jeong, Chan-Yong;Min, Young-Jae;Kim, Soo-Won
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • This paper presents a double-sharpened decimation filter based on the application of a Kaiser and Hamming sharpening technique for multistandard wireless systems. The proposed double-sharpened decimation filter uses a pre-droop compensator which improves the passband response of a conventional cascaded integrator-comb filter so that it provides an efficient sharpening performance at half-speed with comparison to conventional sharpened filters. In this paper, the passband droop characteristics with compensation provides -1.6 dB for 1.25 MHz, -1.4 dB for 2.5 MHz, -1.3 dB for 5 MHz, and -1.0 dB for 10 MHz bandwidths, respectively. These results demonstrate that the proposed double-sharpened decimation filter is suitable for multistandard wireless applications.

Almost linear-phase compensator for Cascaded Integrator-Comb filter (Cascaded Integrator-Comb 필터를 위한 근사 선형 위상 보상기)

  • Lee Kyu-Ha;Lee Chung-yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.4 s.304
    • /
    • pp.153-158
    • /
    • 2005
  • In this paper, a filter is proposed to compensate droop of the CIC filter for SDR. The proposed compensation filter has almost linear-phase characteristic, requires low operational complexity, and is cost-effective due to its second-order characteristic and lowest operational rate in the baseband.. Especially, it compensates droop in the passband with little performance degradation in the stopband. It is shown, by a design example and its performance analysis, that the proposed compensation method gives performance enhancement in communication systems. It is also shown that the proposed method is superior to conventional ones in view of memory usage and computational load.

Multi-Function Distributed Generation with Active Power Filter and Reactive Power Compensator

  • Huang, Shengli;Luo, Jianguo
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1855-1865
    • /
    • 2018
  • This paper presents a control strategy for voltage-controlled multi-function distributed generation (DG) combined with an active power filter (APF) and a reactive power compensator. The control strategy is based on droop control. As a result of local nonlinear loads, the voltages of the point of common coupling (PCC) and the currents injecting into the grid by the DG are distorted. The power quality of the PCC voltage can be enhanced by using PCC harmonic compensation. In addition, with the PCC harmonic compensation, the DG offers a low-impedance path for harmonic currents. Therefore, the DG absorbs most of the harmonic currents generated by local loads, and the total harmonic distortion (THD) of the grid connected current is dramatically reduced. Furthermore, by regulating the reactive power of the DG, the magnitude of the PCC voltage can be maintained at its nominal value. The performance of the DG with the proposed control strategy is analyzed by bode diagrams. Finally, simulation and experimental results verify the proposed control strategy.

Design of CIC Interpolators with Improved Passband and Transition Region for Underwater Acousitc Communication (통과대역 및 전이영역 특성이 개선된 수중음파통신용 CIC 인터폴레이터 설계)

  • Kim, Sunhee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.660-665
    • /
    • 2018
  • Research into underwater wireless networks that enable the monitoring and controlling of the ocean environments has been continuing for disaster prevention and military proposes, as well as for the exploitation of ocean resources throughout the world. A research group led by Hoseo university has been studying a distributed underwater monitoring and controlling network. In this study, we developed an interpolator for acoustic communication between an underwater base station controller and underwater base station, which is included in this network. The underwater acoustic communication provided by this network defines four links whose sampling rates are different. Low power consumption is one of the most important requirements. Therefore, we adopted CIC interpolators, which are known to act as filters with a low power consumption, and some CIC interpolators with an appropriate changing rate were selected depending on the link. However, these interpolators have a large passband drop and wide transition region. To solve these problems, we added a compensator and half-band filter. After verifying the algorithm by using Matlab, we designed and verified it with Verilog-HDL in a ModelSim environment.