• Title/Summary/Keyword: drone pupa

Search Result 4, Processing Time 0.028 seconds

Effect of Drone Pupa Meal Added as Replacement of Sodium Nitrite and Vitamin C on Physico-chemical Quality Characteristics of Emulsion-type Sausage (아질산나트륨 및 비타민 C 대체로 첨가한 수벌번데기 분말이 유화형 소시지의 이화학적 품질 특성에 미치는 영향)

  • Kang, Sun Moon;Maeng, Ah Ran;Seong, Pil-Nam;Kim, Jin-Hyoung;Cho, Soohyun;Kim, Yunseok;Choi, Yong-Soo
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.6
    • /
    • pp.802-810
    • /
    • 2018
  • This study estimated the effect of drone pupa meal (DPM) added as replacement of sodium nitrite (SN) and vitamin C (VC) on physico-chemical quality characteristics of emulsion-type sausages. Samples were prepared either with 150 ppm SN+200 ppm VC (control); 75 ppm SN+100 ppm VC+6.015% DPM (T1); or 12.03% DPM (T2) and then stored at $4^{\circ}C$ for 30 days. The pH value decreased (p<0.05) with increase in the levels of DPM. Moisture and protein content decreased (p<0.05) but fat and ash content increased (p<0.05) with higher levels of DPM. T1 and T2 had higher (p<0.05) saturated fatty acids content and lower (p<0.05) unsaturated and polyunsaturated fatty acids content compared to the control. Lower (p<0.05) $L^*$ and $a^*$ values and higher (p<0.05) $b^*$ and $h^{\circ}$ values were exhibited in the T1 and T2 than in the control; and $C^*$ value was the lowest (p<0.05) in T2. The TBARS content was the highest (p<0.05) in T2, especially, 2 times higher (p<0.05) than in the control. T1 and T2 had harder (p<0.05) texture compared to the control. These findings suggest that the DPM has no replacement effects against SN and VC in emulsion-type sausage, but it has negative effects on color, lipid oxidation stability, and texture.

Safety Investigation on Foodborne Pathogens and Mycotoxins in Honeybee Drone Pupas (수벌번데기로부터 식중독 세균 및 곰팡이독소 안전성 평가)

  • Kim, Se-Gun;Woo, Soon-Ok;Jang, Hye-Ri;Choi, Hong-Min;Moon, Hyo-Jung;Han, Sang-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.5
    • /
    • pp.399-403
    • /
    • 2018
  • In this study, safety investigations on harmful microorganisms and mycotoxins were conducted on honeybee drone pupae as a new food material, which is rich in nutrients and capable of being mass produced in apiaries. The honeybee drone pupae produced in apiaries were collected from three different regions in Korea and frozen immediately. Subsequently, the samples were subjected to freeze-drying. According to the Korean Food Code test method, coliforms, Salmonella species, Staphylococcus aureus, and enterohemorrhagic Escherichia coli were not detected in 280 honeybee drone pupas. In addition, mycotoxins, aflatoxin $B_1$, ochratoxin A, deoxynivalenol, and zearalenone were not detected. Therefore, it is proposed that the honeybee drone pupae collected from the beehives and immediately frozen as safe from harmful microorganisms and mycotoxins and can be used as a food material.

Analysis of Nutritional Compounds and Antioxidant Effect of Freeze-Dried powder of the Honey Bee (Apis mellifera L.) Drone (Pupal stage) (서양종 꿀벌(Apis mellifera L.) 수벌번데기 동결건조 분말의 영양학적 성분 및 항산화 효과)

  • Kim, Jung-Eun;Kim, Do-Ik;Koo, Hui-Yeon;Kim, Hyeon-Jin;Kim, Seong-Yeon;Lee, Yoo-Beom;Kim, Ji-Soo;Kim, Ho-Hyuk;Moon, Jae-Hak;Choi, Yong-Soo
    • Korean journal of applied entomology
    • /
    • v.59 no.3
    • /
    • pp.265-275
    • /
    • 2020
  • In this study, we analyzed the nutritional ingredients of drone pupae (16th to 20th instar old) to evaluate the value of bee products and provide basic data for product diversification, and the extracts prepared using these pupae were tested for physiological activity. According to the analysis of the general ingredients of the freeze-dried powder of these bee pupae, the moisture, crude protein, crude fat, and crude ash was 1.69 ± 0.07%, 48.52 ± 0.20%, 23.41 ± 0.14%, and 4.05 ± 0.02%, respectively. Vitamin C and vitamin E were 14.92 ± 0.52 mg/100 g and 6.06 ± 0.11 mg α-TE/100 g, respectively. Regarding minerals, the highest content of K (1349.13 ± 34.57 mg/100 g) and P (1323.55 ± 43.85 mg/100 g) was observed and Ca and Fe were 55.43 ± 1.51 mg/100 g and 5.49 ± 0.19 mg/100 g, respectively. The fatty acids of the water extracted freeze-dried pupae powder accounted for approximately 59.62 of saturated fatty acids and 40.38 of unsaturated fatty acids, and high-quality fatty acids such as palmitic acid (C16:0) was 35.49 ± 0.08 and oleic acid (C18:1, n-9) was 35.91 ± 0.22 (g/100 g total fatty acids). The total amino acid content was 38.99 ± 2.63 g/100 g and the free amino acid was a total of 5129.04 mg/100 g, of which 1257.68 mg/100 g was proline and 759.12 mg/100 g glutamic acid. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of the drone pupae extract showed values of 0.8 for distilled water extract, 3.2 for 50% EtOH extract, 6.4 for 70% EtOH extract, and approximately 90% for 32 ㎍/mL for 100% EtOH extract. These results suggest that the main compound contributing to the antioxidant activity is a polar compound, and it is highly likely to be a low-molecular protein or a free amino acid. In conclusion, the honey bee drone pupa is excellent as a food resource and can be utilized as a new functional material for food and functional food.

Pupal Drone Extracts for Anti-wrinkle and Skin-lightening Materials (수벌번데기 추출물의 주름개선 및 미백효과 구명)

  • Kim, Jung-Eun;Kim, Do-Ik;Koo, Hui-Yeon;Kim, Hyeon-Jin;Kim, Seong-Yeon;Lee, Yoo-Beom;Moon, Jae-Hak;Choi, Yong-Soo
    • Journal of Life Science
    • /
    • v.30 no.5
    • /
    • pp.428-433
    • /
    • 2020
  • In this study, we created pupal stage extracts of Apis mellifera L. drones for use in cosmetic materials. The effect of the drone pupae extract (DPE) on HDF cells was assessed for analysis of anti-wrinkle activity by collagen or collagenase gene expression, and the skin-lightening effect was studied by in vitro tyrosinase inhibition and B16F10 melanoma assay; the two cells were found to be non-cellular when the concentration of DPE was 100 ㎍/ml. Albutin concentration (positive control) in the whitening test was set at a capacity of 100 ug/ml and m-melanocyte stimulating hormone (α-MSH). A melanin-producing induction material was set at a concentration of 100 nM, and the expression of collagen type I and MMP1 collagenase was measured using HDF cells. MMP1 expression was seen to reduce in a concentration-dependent manner in treatment with DPE. Inhibiting melanin generation with B16F12 cells indicated a tendency to decrease in the DPE treatment group. Both L-Tyrosine and L-DOPA as DPE were used in an in vitro tyrosinase induction test to demonstrate the effects of tyrosinase suppression on concentrations. The higher the concentration of DPE, the greater the wrinkle reduction and whitening effect. In conclusion, it was found that DPE is an effective smoothing and whitening material by increasing collagen generation and inhibiting collagenase expression and reducing melanin production.