• Title/Summary/Keyword: driving safety

Search Result 1,455, Processing Time 0.031 seconds

The Test Study on Driving Efficiency Improvement of Two-wheeled Electric Vehicle according to Regenerative Braking (전기 동력 이륜차의 회생제동에 따른 구동효율 향상에 관한 평가 연구)

  • Cho, Suyeon;Seo, Donghyun;Park, Junsung;Shin, Waegyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.635-641
    • /
    • 2016
  • Regenerative braking performance of an electrically powered vehicle is closely related to driving distance per battery charge. An electric vehicle uses appropriate amounts of mechanical braking force and electromagnetic regenerative braking force to recover energy and increase driving efficiency. In particular, when it drives on a downhill road, energy recovery rate is maximized through regenerative braking during coasting based on the mass inertia of the vehicle. Since an electric two-wheeled vehicle covered in this paper is lighter than an electric four-wheeled vehicle, the improvement of its driving distance per battery charge through regenerative braking is different from an electric four-wheeled vehicle. This study compared the driving characteristics of an electric two-wheeled vehicle based on regenerative braking. Two driving test modes were simulated with a chassis dynamometer system. By analyzing the measurement of a chassis dynamometer, the driving characteristics of a two-wheel electric vehicle, such as driving efficiency, were analyzed. In addition, test results were reviewed to draw the limitations of conventional test methods for regenerative braking performance of an electric two-wheel vehicle.

Development of Road Safety Estimation Method using Driving Simulator and Eye Camera (차량시뮬레이터 및 아이카메라를 이용한 도로안전성 평가기법 개발)

  • Doh, Tcheol-Woong;Kim, Won-Keun
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.185-202
    • /
    • 2005
  • In this research, to get over restrictions of a field expreiment, we modeled a planning road through the 3D Virtual Reality and achieved data about dynamic response related to sector fluctuation and about driver's visual behavior on testers' driving the Driving Simulator Car with Eye Camera. We made constant efforts to reduce the non-reality and side effect of Driving Simulator on maximizing the accord between motion reproduction and virtual reality based on data Driving Simulator's graphic module achieved by dynamic analysis module. Moreover, we achieved data of driver's natural visual behavior using Eye Camera(FaceLAB) that is able to make an expriment without such attaching equipments such as a helmet and lense. In this paper, to evaluate the level of road's safety, we grasp the meaning of the fluctuation of safety that drivers feel according to change of road geometric structure with methods of Driving Simulator and Eye Camera and investigate the relationship between road geometric structure and safety level. Through this process, we suggest the method to evaluate the road making drivers comfortable and pleasant from planning schemes.

  • PDF

Study on Flow Lubrication Selection of Driving Gear Unit for EMU (전동차용 DRIVING GEAR UNIT의 윤활유량 선정에 관한 연구)

  • Kim, Kyung-Han;Lee, Tae-Hun;Kim, Hak-Soo;Seo, Young-Jin;Ko, Hyung-Keun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.132-137
    • /
    • 2011
  • Many studies are being conducted to improve high speed, light weight and safety of passenger. To improve safety of rolling stock, safety of running performance is most important, and optimizing flow lubrication in driving gear is essential. This study simulates lubricant flow change in driving gear casing which is splashed by the surface of low speed gear teeth following rotational direction of driving gear unit for EMU by using CFD analysis, and based on analysis detail, non-load actual test is conducted for similar driving condition to find out suitability of analysis, selection of lubricate and stability of driving gear.

  • PDF

Driving Safety Analysis for vehicles Against High Wind on the Bridges Using Extreme Value Statistics (극치통계분석을 이용한 교량상판 풍하중에 대한 차량주행 안전도 평가)

  • Chung, Jee-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.112-117
    • /
    • 2010
  • This study presents a methodology to evaluate the driving safety of vehicles against localized high wind on the roads over the valleys or along the coasts. Risk level for vehicle accident is derived from the side slip caused by cross wind, and then safety criteria based on reliability for driving stability are defined. The level of safety is classified according to probability of exceeding against wind speed using the concept of extreme value statistics. To attain the safety level of vehicle on bridges, numerical simulations using Computational Fluid Dynamics(CFD) are performed. Based on this result, risk reduction and quality improvement is expected through analysis for each alternative in bridges design, construction and operation & maintenance stage with proposed process

Development of an Adaptive Feedback based Actuator Fault Detection and Tolerant Control Algorithms for Longitudinal Autonomous Driving (적응형 되먹임 기반 종방향 자율주행 구동기 고장 탐지 및 허용 제어 알고리즘 개발)

  • Oh, Kwangseok;Lee, Jongmin;Song, Taejun;Oh, Sechan;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • This paper presents an adaptive feedback based actuator fault detection and tolerant control algorithms for longitudinal functional safety of autonomous driving. In order to ensure the functional safety of autonomous vehicles, fault detection and tolerant control algorithms are needed for sensors and actuators used for autonomous driving. In this study, adaptive feedback control algorithm to compute the longitudinal acceleration for autonomous driving has been developed based on relationship function using states. The relationship function has been designed using feedback gains and error states for adaptation rule design. The coefficients in the relationship function have been estimated using recursive least square with multiple forgetting factors. The MIT rule has been adopted to design the adaptation rule for feedback gains online. The stability analysis has been conducted based on Lyapunov direct method. The longitudinal acceleration computed by adaptive control algorithm has been compared to the actual acceleration for fault detection of actuators used for longitudinal autonomous driving.

A Study on the Mold System of Bicycles Gear for Driving Safety (주행 안전을 위한 자전거 기어의 프레스금형에 관한 연구)

  • Jeong, Youn-Seung
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2018
  • Recently, bicycle has means of effective healthy transportation, and riding the bicycles is considered as popular recreational and sporting activities. Also, the saddle, steering system, driving device and braking device are researched briskly because of consumer's need for driving performance and comfort. Especially, the importance of a cassette responsible for transmission function by transmitting power to the drive shaft through the chain is very focused. The writer conducted structural analysis for the sprocket of each level using the ANSYS widely used for the analysis. Speed shifting performance was enhanced by minimization / simplification of shifting point through a sort of tooth profile of the cassette. By partitioning a clear value type and other shifting point, it has been modified to enable smooth speed-shifting. In addition, as titanium precision forming process, this study studied the molding technique by blanking and dies forging for mass production of the cassette. so it could be expected that the entire drive train would utilize that in the future. The stamping process capability for thin materials for the mass production of the sprockets is applicable to producing automobile parts, so lightweight component production is likely to be possible through that, for the safety of driving.

A Study on Assessment Items and Considerations for Development of KNCAP of Automated Driving System (자율주행자동차 KNCAP(자동차안전도평가) 도입 시 평가항목과 고려사항에 관한 연구)

  • Woo, Hyungu;Lee, Gwang Goo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.102-110
    • /
    • 2021
  • As an alternative to solving safety, environments, and aging problems, ADS (Automated driving system) in the global automotive market is actively being developed as a new growth industry. In time for the appearance of ADS, relevant regulations and assessment programs must also be developed. For example, safety standards for the Level 3 automated driving system were promulgated in December 2019 by the Ministry of Land, Infrastructure and Transport of Korean government. However, assessment programs such as KNCAP for autonomous functions of ADS have not yet been introduced in Korea as well as globally. The autonomous driving functions of ADS at Level 3 or higher must be capable to recognize, judge and respond to objects and events in a wide variety of complex situations. In this paper, we examined and studied the complex situations, considerations and assessment items that ADS must respond to in the interest of safety for passengers, pedestrians and other road users. We hope this paper will be helpful to develop an execution program in the future.

A Study on In-vehicle Aggressive Driving Detection Recorder System for Monitoring on Drivers' Behavior (운전행태 감시를 위한 차량 위험운전 검지장치 연구)

  • Hong, Seung-Jun;Lim, Lyang-Keun;Oh, Ju-Taek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.16-22
    • /
    • 2011
  • This paper presents the potential of in-vehicle data recorder system for monitoring aggressive driving patterns and providing feedback to drivers on their on road behaviour. This system can detect 10 risky types of drivers' driving patterns such as aggressive lane change, sudden brakes and turns with acceleration etc. Vehicle dynamics simulation and vehicle road test have been performed in order to develop driving pattern recognition algorithms. Recorder systems are installed to 50 buses in a single company. Drivers' driving behaviour are monitored for 1 month. The drivers' risky driving data collected by the system are analyzed. Aggressive lane change in 50km/h below is a cause in overwhelming majority of risky driving pattern.

Localization Requirements for Safe Road Driving of Autonomous Vehicles

  • Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.389-395
    • /
    • 2022
  • In order to ensure reliability the high-level automated driving such as Advanced Driver Assistance System (ADAS) and universal robot taxi provided by autonomous driving systems, the operation with high integrity must be generated within the defined Operation Design Domain (ODD). For this, the position and posture accuracy requirements of autonomous driving systems based on the safety driving requirements for autonomous vehicles and domestic road geometry standard are necessarily demanded. This paper presents localization requirements for safe road driving of autonomous ground vehicles based on the requirements of the positioning system installed on autonomous vehicle systems, the domestic road geometry standard and the dimensions of the vehicle to be designed. Based on this, 4 Protection Levels (PLs) such as longitudinal, lateral, vertical PLs, and attitude PL are calculated. The calculated results reveal that the PLs are more strict to urban roads than highways. The defined requirements can be used as a basis for guaranteeing the minimum reliability of the designed autonomous driving system on roads.

Study on Prevention of Drowsiness Driving using Electrocardiography(LF/HF) Index (심전도(LF/HF)를 활용한 졸음운전 예방 연구)

  • Moon, Kwangsu;Hwang, Kyungin;Choi, Eunju;Oah, Shezeen
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.2
    • /
    • pp.56-62
    • /
    • 2015
  • The purpose of this study was to identify the relationship between the index of Electrocardiography(LF/HF) and the occurrence of drowsiness driving while driving in a simulated situation. Participants were 31 undergraduate students with an experience in driving and they participated 30 minutes driving under enough sleep condition and 1 hour under the sleep deprivation condition. The Euro Truck Simulator II was used for driving simulation task and ECG and perceived drowsiness of each participants were measured during two driving conditions. Perceived sleepiness recorded by the checklist every 10 minutes and ECG data extracted before and after 15 seconds of every 10 minutes to verify the relationship between two variables. The results showed that the level of perceived sleepiness under sleep deprivation condition was higher than that under the enough sleep condition, and the level of LF/HF under sleep deprivation condition was lower than that under the enough sleep condition. In addition, the result of analysis of repeated measure ANOVA for ECG indicated that authentic sleepiness revealed in 20 minutes after the start of driving under the sleep deprivation condition. However, the result of perceived drowsiness indicated that authentic sleepiness revealed in 30 minutes after the start of driving. These result suggest that the time difference between biological and perceived response on drowsiness may be exist. Finally, the significant negative correlation between the LF/HF level and perceived drowsiness was observed. These findings suggest that ECG(LF/HF) can be an possible index to measure drowsiness driving.