• Title/Summary/Keyword: driving safety

Search Result 1,481, Processing Time 0.029 seconds

Optimal Speed Control of Hybrid Electric Vehicles

  • Yadav, Anil Kumar;Gaur, Prerna;Jha, Shyama Kant;Gupta, J.R.P.;Mittal, A.P.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.393-400
    • /
    • 2011
  • The main objective of this paper is to control the speed of Nonlinear Hybrid Electric Vehicle (HEV) by controlling the throttle position. Various control techniques such as well known Proportional-Integral-Derivative (PID) controller in conjunction with state feedback controller (SFC) such as Pole Placement Technique (PPT), Observer Based Controller (OBC) and Linear Quadratic Regulator (LQR) Controller are designed. Some Intelligent control techniques e.g. fuzzy logic PD, Fuzzy logic PI along with Adaptive Controller such as Self Organizing Controller (SOC) is also designed. The design objective in this research paper is to provide smooth throttle movement, zero steady-state speed error, and to maintain a Selected Vehicle (SV) speed. A comparative study is carried out in order to identify the superiority of optimal control technique so as to get improved fuel economy, reduced pollution, improved driving safety and reduced manufacturing costs.

Lane-Level Positioning based on 3D Tracking Path of Traffic Signs (교통 표지판의 3차원 추적 경로를 이용한 자동차의 주행 차로 추정)

  • Park, Soon-Yong;Kim, Sung-ju
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.172-182
    • /
    • 2016
  • Lane-level vehicle positioning is an important task for enhancing the accuracy of in-vehicle navigation systems and the safety of autonomous vehicles. GPS (Global Positioning System) and DGPS (Differential GPS) are generally used in navigation service systems, which however only provide an accuracy level up to 2~3 m. In this paper, we propose a 3D vision based lane-level positioning technique which can provides accurate vehicle position. The proposed method determines the current driving lane of a vehicle by tracking the 3D position of traffic signs which stand at the side of the road. Using a stereo camera, the 3D tracking paths of traffic signs are computed and their projections to the 2D road plane are used to determine the distance from the vehicle to the signs. Several experiments are performed to analyze the feasibility of the proposed method in many real roads. According to the experimental results, the proposed method can achieve 90.9% accuracy in lane-level positioning.

Robust Rear Center-Hinge Bracket Optimization Based on Taguchi Method (다구찌 방법을 활용한 Rear Center-Hinge Bracket 강건 설계)

  • Jung, Sebin;Kim, Minho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.203-209
    • /
    • 2014
  • The rear center-hinge bracket is designed for supporting and folding the rear-seat backrest. This bracket needs to be strong enough to be able to rigidly hold the rear-seat backrest and to withstand luggage loads from the car trunk that are generated when a vehicle is driving on the roads. Particularly, current accident studies report that many serious occupant injuries occurred when the rear-seat back easily folded inward toward the car interior, driven by the luggage loads in the trunk. Given this fact, the robust design of the rear center-hinge bracket that mainly supports the rear backrest has become more important for providing customer safety and preventing high warranty and durability problems. However, none of the studies have emphasized its significant role and considered its robust optimization. Therefore, this paper presents how the hinge-bracket design is optimized based on an application of the finite-element method coupled with the parameter design using Taguchi's design experiment. Finally, Taguchi method's application optimizes a robust center-hinge bracket that shows more rigid performance although it has lighter weight and thinner thickness.

The Transmission Development with P.T.O Axle Design for Work Vehicle Including Multi-faculty (다기능 작업차를 위한 P.T.O 축 및 트랜스밋션의 최적설계 및 개발)

  • Kwac, Lee-Ku;Kim, Jae-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.108-117
    • /
    • 2008
  • A transmission designed with P.T.O(Power Take-Off) axle for agricultural work vehicles including multi-purpose vehicles has been developed. It is focused on the 4-wheel drive transmission of synchronous contact type for practical use in fruit tree households which is required for a large-sized agricultural vehicle. Concerning to the specification performed, the load capacity is from 500kg to 1,000kg and the safety should be secured for passengers. In addition, the driving condition should also be secured under bad situations of the topographic slope, swampy land and the rest. In order to carry out above tests, a prototype vehicle through strength analysis of transmission design has been manufactured. Consequently, optimal design conditions on the power transmission with multi-purpose vehicle for various jobs are proposed such as an indication of optimal RPM and torque at a certain work situation. The performance test through the prototype of multi-purpose work vehicle is performed and the related data base is achieved. Finally, it is improved on troubles by the analysis of the results of R&D and provided the solutions on problems occurring to mass production in the future.

Optimum Design of SUV Suspension Parameters Considering Rollover Stability (전복 안정성을 고려한 SUV 현가장치 파라미터의 최적설계)

  • Lee, Sang-Beom;Jang, Young-Jin;Yim, Hong-Jae;Nah, Do-Baek
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.4
    • /
    • pp.410-416
    • /
    • 2009
  • In recent years, the rollover accident of large class of vehicles has become important safety issue. Even though the rollover form a small percentage of all traffic accidents, they have a fatal effect upon the driver and passenger. Among the traffic accidents occurred in driving, the rollover is the major cause of traffic fatalities. Therefore, it is required to develop the analytical and experimental techniques for predicting rollover propensity of vehicles and also to improve the vehicle suspension design in the viewpoint of rollover resistance. In this study, the parameter sensitivities for the roll angle of SUV suspension are analyzed, and then the determined design parameters are optimized by using the regression model function of the response surface methods. The analysis results show that the roll angle of the optimized vehicle is decreased as compared with the initial vehicle and also the rollover possibility is decreased when the roll rate of the front suspension is larger than the roll rate of the rear suspension.

  • PDF

THE MECHATRONIC VEHICLE CORNER OF DARMSTADT UNIVERSITY OF TECHNOLOGY-INTERACTION AND COOPERATION Of A SENSOR TIRE, NEW LOW-ENERGY DISC BRAKE AND SMART WHEEL SUSPENSION

  • Bert Breuer;Michael Barz;Karlheinz Bill;Steffen Gruber;Martin Semsch;Thomas Strothjohann;Chungyang Xie
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Future on-board vehicle control systems can be further improved through new types of mechatronic systems. In particular, these systems' capacities for interaction enhance safety, comfort and economic viability. The Automotive Engineering Department (fzd) of darmstadt University of Technology is engaged in research of the mechatronic vehicle corner, which consists of three subsystems: sensor tire, electrically actuated wheel brake and smart suspension. By intercommunication of these three systems, the brake controller receives direct, fast and permanent information about dynamic events in the tire contact area provided by the tire sensor as valuable control input. This allows to control operation conditions of each wheel brake. The information provided by the tire sensor for example help to distinguish between staightline driving and cornering as well as to determine $\mu$-split conditions. In conjunction with current information of dynamic wheel loads, tire pressures and friction tyre/road, the ideal brake force distribution can be achieved. Alike through integration of adaptive suspension bushings, elastokinematic behaviour and wheel positions can be adapted to manoeuver-oriented requirements.

Development of Mock Control Devices and Data Acquisition Apparatus for Power Tiller Training Simulator

  • Kim, YuYong;Kim, Byounggap;Shin, Seung-yeoub;Kim, Byoungin;Hong, Sunjung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.284-288
    • /
    • 2015
  • Training power tiller operators in safe farming is necessary to avoid farming accidents. With the continuing progress in computational technology, driving simulators have become increasingly popular for conducting such training. Purpose: The objective of this study is to develop mock control devices and data acquisition apparatus for a tiller simulator. Methods: Except for the stand and tail wheel adjusting levers, the mock control devices were developed using a tiller handle assay. The data acquisition apparatus was realized using an embedded data-logging device and LabVIEW, the system design software. Results: The control devices of a real handle assay were successfully mimicked by the mock operator control devices, which used sensors for the relevant measurements. The data from the mock devices were acquired and transmitted to the main computer at intervals of 10 ms via Wi-Fi. Conclusions: The developed mock control devices operate similar to real power tillers and can be utilized in power tiller training simulators.

Carbonaceous Media for Vehicular Natural Gas Storage (자동차용 천연가스 저장을 위한 탄소매질)

  • Moon, Hee
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • Compressed natural gas (CNG) has been used as a vehicular fuel compressed at 24.8 MPa because the energy density of natural gas is extremely low compared with gasoline. Thus it has problems in both safety and cost for multiple stage compression. For these reasons the use of adsorbed natural gas (ANG) has been pursued since the storage of natural gas is possible at a relatively low pressure. The present target is to obtain media to store natural gas at 3.5 MPa as ANG that ensures the comparable energy density of CNG, giving approximately one-fourth the driving range of an equivalent volume gasoline tank. In this review, the recent development of carbon media, their characteristics, and practical applications for natural gas storage are introduced and some recommendations are also suggested.

Analysis on the Differences of Driving Abilities and Necessity Awareness on Traffic Safety Features by Driver's Age (운전자 연령에 따른 운전능력 및 교통안전시설물 필요성 인식 차이에 관한 연구)

  • Choi, Eun-Jin;Lee, Ho-Won;Yoo, Sung-Jun;Heo, Nak-Won
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.249-252
    • /
    • 2016
  • 본 연구에서는 연령증가에 따라 운전에 필요한 신체적, 인지적 능력의 변화가 어떻게 나타나는지 설문을 통해 분석하고, 이것이 교통안전 시설물(신호기, 노면표시, 도로표지판)의 필요성 및 적정성을 평가하는 것과 어떤 관계가 있는 지 살펴보고자 하였다. 이를 위해 20세 이상 운전면허 소지자를 대상으로 5개 권역, 500명을 대상으로 설문조사를 실시하여 이를 분석하였다. 운전능력에 대한 자기평가 점수는 종합적 능력, 개별능력(시력, 청력, 색채식별 등) 모두 연령이 증가함에 따라 점수가 낮아지는 것으로 분석되었다. 특히 시력은 연령증가에 따른 감소폭이 크고, 절대적인 평균점수가 다른 항목에 비하여 낮게 나타났다. 시력의 경우 타 신체적, 인지적 능력에 비해 운전 중 기능의 저하에 따른 체감도가 크기 때문인 것으로 판단된다. 설문결과에 따른 분류분석을 통해서는 신체적, 인지적 기능의 저하가 시작되는 연령이 기존의 고령운전자로 판단하는 65세 보다 낮은 48세로 분석되었다. 이것은 연령증가에 따른 기능 저하로 인한 영향을 받는 운전자가 그렇지 않은 운전자보다 더 많다는 것을 의미한다. 또한 시설물에 대한 필요성 인식에 대한 평가 역시 운전능력에서 차이를 나타내는 연령대에서 인식의 차이가 있을 것으로 분석되었다.

  • PDF

A Comparison of Visual Occlusion Methods: Touch Screen Device vs. PLATO Goggles

  • Park, Jung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.5
    • /
    • pp.589-595
    • /
    • 2011
  • Objective: This study compares two visual occlusion methods for the evaluation of in-vehicle interfaces. Background: Visual occlusion is a visual demand measuring technique which uses periodic vision/occlusion cycle to simulate a driving(or mobile) environment. It has been widely used for the evaluation of in-vehicle interfaces. There are two major implementation methods for this technique: (1) occlusion using PLATO(portable liquid crystal apparatus for tachistoscopic occlusion) goggles; (2) occlusion using a software application on a touchscreen device. Method: An experiment was conducted to examine the visual demand of an in-vehicle interface prototype using the goggle-based and the touchscreen-based occlusion methods. Address input and radio tuning tasks were evaluated in the experiment. Results: The results showed that, for the radio tuning task, there were no significant differences in total shutter open time and resumability ratio between the two occlusionconditions. However, it took longer for the participants to input addresses with the touchscreen-based occlusion. Conclusion & Application: The results suggest that touchscreen-based method could be used as an alternative to traditional, gogglebased visual occlusion especially in less demanding visual tasks such as radio tuning.