• Title/Summary/Keyword: driving range

Search Result 727, Processing Time 0.026 seconds

Determination of Driving Rain Index by Using Hourly Weather Data for Developing a Good Design of Wooden Buildings

  • Ra, Jong Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.627-636
    • /
    • 2018
  • This research was performed to supplement the previous research about the driving rain index (DRI) for Korea determined by using daily weather data for 30 years. The average annual driving rain index (AADRI) was calculated from the hourly weather data, and the magnitude of DRI was investigated according to wind directions. The hourly climate data were obtained from the Korea Meteorological Administration (KMA) for the period 2009 to 2017. Of 82 locations investigated, seven were classified into regions where the level of exposure of walls to rain was high. The result showed quite a difference from the previous results, in which no high exposure regions were observed. Since the hourly-based and the daily-based annual driving rain index (ADRI) values showed only a slight difference, the result may be explained by the length of the periods used in both studies. The change of DRI according to wind directions showed that there was a certain range of wind directions in which driving rain easily approached building walls. It suggests that the consideration of wind directions with high DRI would be useful to develop a good design of wooden buildings from the point of wood preservation and maintenance.

Design of AC PDP driving Circuit for Low Power Consumption (저전력화를 위한 AC형 PDP구동회로의 설계)

  • Jang, Yoon-Seok;Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.2014-2019
    • /
    • 2006
  • PDP driving circuit requires switching devices and capacitors to stand up high voltages over 160V. This is the main cause that the power consumption and the cost of a PDP driving circuit increase. Conventional PDP driving circuits consist of 3 voltage sources and 16 switching devices. In this paper, we propose a PDP driving circuit using 2 voltage sources and 12 switching devices that can be operated with a lower supply voltage than conventional driving circuit. The operation of the proposed driving circuit is verified by the computer simulation. Simulation results show that the output signal can drive PDP cell when the supply voltage is higher than 45V in the input frequency range 70kHz to 100kHz.

Studies on Analysis of Particle Lumping and Improvement of Driving Characteristics in Charged Particle Type Display (대전입자형 디스플레이에 있어서 입자뭉침의 분석 및 구동특성 개선에 관한 연구)

  • Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.915-919
    • /
    • 2011
  • We analyzed various forces affective to the charged particles in closed space, to explain the image degradation and lifetime-shortening phenomena because of particle lumping which is one of the serious problems in reflective displays. It is possible to predict the quantity of q/m which is the most important parameter in determining the optical and electrical characteristics, by calculating the image force and kinetic energy. For stable driving, the quantity of q/m must be in the defined range but it changes during the fabrication process, so we added the filtering process to solve this problem and obtained the well-defined nonlinear driving voltage coinciding with the threshold voltage. And we obtained the fully-driving property which prevents the particle lumping and decides the image quality and lifetime of panel from the optical characteristics and occupation surface of moving particles.

Study on the Pose Control of a 6 DOF Simulator with Pneumatic Cylinder Driving Apparatus (공기압실린더 구동장치를 이용한 6자유도 시뮬레이터의 자세제어에 관한 연구)

  • Jeong, J.H.;Ji, S.W.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.59-65
    • /
    • 2007
  • In this study, 6-DOF simulator using pneumatic cylinder driving apparatus was manufactured because a pneumatic cylinder driving apparatus is superior to electric driving motor and hydraulic actuator, which used in traditional 6-DOF simulator, in competitive price and acceleration performance, and, 6-DOF motion can be realized at a low price in case that relatively low load is imposed on the simulator. The possible range of pose control of the simulator was investigated by inverse kinematics, and, it was controlled by a linear controller derived from linear model of the simulator. The Experimental results show that the simulator follows given coordinate well.

  • PDF

Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus (공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계)

  • Jang, Ji-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF

Low Cost Motor Drive Technologies for ASEAN Electric Scooter

  • Tuan, Vu Tran;Kreuawan, Sangkla;Somsiri, Pakasit;Huy, Phuong Nguyen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1578-1585
    • /
    • 2018
  • This work investigates two different motor drive technologies, switched reluctance motor (SRM) and induction motor (IM). They are designed optimally to meet the desired performances for electric scooters. The comparison of both motors is described in terms of performances and material cost. With the similar constraint, induction motor performs slightly better than switched reluctance motor. But this must be traded-off with higher weight and cost. Both drive systems are, however, suitable for electric scooter application. Finally, the range simulations are conducted on a European urban driving cycle, ECE15 driving cycle and a more realistic cycle, Bangkok driving cycle. The e-scooter ranges are varied from 36 to 109 km depending on driving cycle, motor technology and number of passengers.

QUANTITATIVE STUDY ON THE FEARFULNESS OF HUMAN DRIVER USING VECTOR QUANTIZATION

  • Kim, J.H.;Kim, Y.W.;Sim, K.Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.505-512
    • /
    • 2007
  • This paper presents the quantitative evaluation of the fearfulness of the human driver in the case of the short range (time) on the highway. The driving situation is realized by using the driving simulator based on CAVE, which provides three-dimensional stereoscopic immersive visual information. The examinees' responses and personal information are categorized reasonably by applying the competitive learning algorithm. The characteristics of each group are analyzed. The following two situations are also compared: (1) the active approaching situation where the examinee drives the vehicle near the preceding vehicle, and (2) the passive approaching situation where the preceding vehicle nears the examinee's vehicle by gradually decelerating. The range time that the examinee feels fear in the active approaching case tends to be shorter than that in the passive approaching case.

A Study on the Compensation of the Difference of Driving Behavior between the Driving Vehicle and Driving Simulator (가상주행과 실차주행의 운전자 주행행태 차이에 관한 연구)

  • Park, Jinho;Lim, Joonbeom;Joo, Sungkab;Lee, Soobeom
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.107-122
    • /
    • 2015
  • PURPOSES : The use of virtual driving tests to determine actual road driving behavior is increasing. However, the results indicate a gap between real and virtual driving under same road conditions road based on ergonomic factors, such as anxiety and speed. In the future, the use of virtual driving tests is expected to increase. For this reason, the purpose of this study is to analyze the gap between real and virtual driving on same road conditions and to use a calibration formula to allow for higher reliability of virtual driving tests. METHODS : An intelligent driving recorder was used to capture real driving. A driving simulator was used to record virtual driving. Additionally, a virtual driving map was made with the UC-Win/Road software. We gathered data including geometric structure information, driving information, driver information, and road operation information for real driving and virtual driving on the same road conditions. In this study we investigated a range of gaps, driving speeds, and lateral positions, and introduced a calibration formula to the virtual record to achieve the same record as the real driving situation by applying the effects of the main causes of discrepancy between the two (driving speed and lateral position) using a linear regression model. RESULTS: In the virtual driving test, driving speed and lateral position were determined to be higher and bigger than in the real Driving test, respectively. Additionally, the virtual driving test reduces the concentration, anxiety, and reality when compared to the real driving test. The formula includes four variables to produce the calibration: tangent driving speed, curve driving speed, tangent lateral position, and curve lateral position. However, the tangent lateral position was excluded because it was not statistically significant. CONCLUSIONS: The results of analyzing the formula from MPB (mean prediction bias), MAD (mean absolute deviation) is after applying the formula to the virtual driving test, similar to the real driving test so that the formula works. Because this study was conducted on a national, two-way road, the road speed limit was 80 km/h, and the lane width was 3.0-3.5 m. It works in the same condition road restrictively.

Influence of the change of driving confidence level upon driving behavior in the age groups (운전확신수준의 변화가 연령별 운전행동에 미치는 영향)

  • Soonyeol Lee;Soonchul Lee;Sunjin Park
    • Korean Journal of Culture and Social Issue
    • /
    • v.12 no.3
    • /
    • pp.23-47
    • /
    • 2006
  • The purpose of this research is to study the relation between the change of driver's driving confidence level in the age categories and driving behavior. To survey the driving confidence level, we used the 'Driving Confidence Scale' questionnaire and surveyed the drive career, mileage, driving days, violation of traffic regulation (drunk driving, overspeed), traffic accident experience (assaulter, sufferer) together. The subjects of investigation were from 19-year-old to 80-year-old and 1,055 persons were participated in the research totally. To examinethe structure of driving confidence level, we executed the factor analysis. We compared the driving confidence level in the age categories (under 29-year-old, 30~39, 40~49, 50~64, over 65-year-old) and studied the relation between driving confidence level and driving behavior. Driving confidence level was composed of 4 factors such as 'insensibility to situation', 'unsafe driving', 'careless concentration' and 'self-efficacy of driving', and there was decreasing tendency for driving confidence level and overall driving behavior according to increasing age. Driving confidence level had the interrelation with age range, assaulting accident, suffered accident, driving period, drunk driving, overspeed, driving career and so on. We examined the difference of driving confidence level and driving behavior by dividing the participated drivers' groups into the traffic accident experienced group, drunk driving group and overspeed driving group, and there was a significant difference on driving confidence level and driving behavior between the group who had not experienced the violation of traffic regulation or traffic accident and another group who had experienced the violation of traffic regulation or traffic accident.

The Component Sizing Process and Performance Analysis of Extended-Range Electric Vehicles (E-REV) Considering Required Vehicle Performance (SUV급 E-REV의 요구 동력 성능을 고려한 동력원 용량선정 및 성능 해석)

  • Lee, Daeheung;Jeong, Jongryeol;Park, Yeongil;Cha, Suk Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.136-145
    • /
    • 2013
  • It is very important to determine specifications of components included in the drive-train of vehicles at the initial design stage. In this study, component sizing process and performance analysis for Extended-Range Electric Vehicles (E-REV) are discussed based on the foundation of determined system configuration and performance target. This process shows sizing results of an electric driving motor, a final drive gear ratio and a battery capacity for target performance including All Electric Range (AER) limit. For E-REV driving mode, the constant output power of a Gen-set (Engine+Generator) is analyzed in order to sustain State of Charge (SOC) of the battery system.