• 제목/요약/키워드: driving performance

검색결과 2,468건 처리시간 0.045초

차량주행 모사 조건에서 로드셀을 이용한 인젝터 누적 연료 분사량 측정 (A Cumulative Injected Fuel Mass Measurement Under a Vehicle Driven Condition using Loadcells)

  • 조성근;이충훈
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2016
  • A gasoline injector rig which can measure cumulative injected fuel mass under a vehicle driving condition was developed. The measurement system consists of an engine control unit (ECU), data acquisition (DAQ) and injected fuel collection system using loadcells. By supplying reconstructed sensor signals which simulate the real vehicle's sensor signals to the ECU, the ECU drives injectors as if they were driven in the vehicle. The vehicle's performance was computer simulated by using $GT-Suite^{(R)}$ software based on both engine part load performance and automatic transmission shift map. Throttle valve position, engine and vehicle speed, air mass flow rate et al. were computer simulated. The used vehicle driving pattern for the simulation was FTP-75 mode. For reconstructing the real vehicle sensor signals which are correspondent to the $GT-Suite^{(R)}$ simulated vehicle's performance, the DAQ systems were used. The injected fuel was collected with mess cylinders. The collected fuel mass in the mess cylinder with elapsed time after starting FTP-75 driving mode was measured using loadcells. The developed method shows highly improved performance in fast timing and accuracy of the cumulative injected fuel mass measurement under the vehicle driven condition.

수밀댐퍼 구동장치의 강인제어에 관한 연구 (Design of a Robust Controller for a Watertight Damper Driving System)

  • 한승훈;장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.45-51
    • /
    • 2017
  • Semi-submersible drilling rigs are offshore plants that perform functions such as ocean exploration for oil and gas acquisition, drilling and production, and storage and unloading of crude oil and gas. Semi-submersible drilling rigs use watertight dampers as emergency buoyancy holders. Since the watertight damper is an emergency shutoff device, it is mainly driven by a pneumatic driving system that can operate without a power supply. The pneumatic driving system has highly non-linear characteristics due to compressibility of air and external disturbance such as static and Coulomb friction. In this paper, a new control algorithm is proposed for a watertight damper driving system based on the sliding mode control with a disturbance observer. To evaluate control performance and robust stability of the designed controller, the control results were compared with the results obtained using the state feedback controller. As a result, it was confirmed that the pneumatic driving system for driving the watertight damper using the sliding mode controller with a disturbance observer can obtain excellent control performance against the parameter changes and the disturbance input.

전륜구동 전기자동차의 기어비 변경에 따른 구동 특징 민감도 분석 (Sensitivity Analysis on Driving Characteristics According to Change in Gear Ratio of a Front Wheel Drive Electric Vehicle)

  • 손영갑;김정민
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.50-55
    • /
    • 2022
  • Acceleration performance, maximum velocity, urban driving energy consumption, and high-way driving energy consumption are important characteristics of electric vehicle driving. This study analyzes the effect of a gear ratio on these characteristics for a front wheel drive electric vehicle. The normalized sensitivity metric is used to compare the sensitivity of these scaled characteristics to the changes in the gear ratio. The sensitivity analysis results show that the normalized values are 0.95 for maximum velocity, 0.91 for acceleration performance, 0.51 for urban driving energy consumption, and 0.24 for high-way driving energy consumption. Therefore, the maximum velocity was affected the most by the changes in the gear ratio. These results can be used to determine the gear ratio of a front wheel drive electric vehicle to optimize the driving characteristics simultaneously.

Design and experimentation of remote driving system for robotic speed sprayer operating in orchard environment

  • Wonpil, Yu;Soohwan Song
    • ETRI Journal
    • /
    • 제45권3호
    • /
    • pp.479-491
    • /
    • 2023
  • The automation of agricultural machines is an irreversible trend considering the demand for improved productivity and lack of labor in handling agricultural tasks. Unstructured working environments and weather often inhibit a seemingly simple task from being fully autonomously performed. In this context, we propose a remote driving system (RDS) to aid agricultural machines designed to operate autonomously. Particularly, we modify a commercial speed sprayer for orchard environments into a robotic speed sprayer to evaluate the proposed RDS's usability and test three sensor configurations in terms of human performance. Furthermore, we propose a confidence error ellipsebased task performance measure to evaluate human performance. In addition, we present field experimental results describing how the sensor configurations affect human performance. We find that a combination of a semiautonomous line tracking device and a wide-angle camera is the most effective for spraying. Finally, we discuss how to improve the proposed RDS in terms of usability and obtain a more accurate measure of human performance.

초공동 고속 캐비테이션 터널 구동펌프 개발 (Development of the Driving Pump for the Super-cavitation & High-speed Cavitation Tunnel)

  • 안종우;김건도;백부근;김경열
    • 대한조선학회논문집
    • /
    • 제55권2호
    • /
    • pp.153-160
    • /
    • 2018
  • In order to develop the driving pump for High-speed Cavitation Tunnel(HCT) which can experiment the super-cavitating submerged body, KRISO decided on the pump specification, designed the mixed-flow pump on the basis of the existing pump data and predicted the performance of the design pump using commercial CFD code (CFX-10). After the manufacture and installation of the driving pump, KRISO conducted the trial-test for HCT, analyzed the pump performance and compared trial-test results to those of design stage. The trial-test items for the HCT driving pump are measurements of output current/voltage at the inverter of the driving pump and the flow velocity in the HCT test section. The trial-test results showed the decrease in the flow rate of about 4.6% and the increase in pump head of about 8%, compared with those of the pump prediction. After the trial-test, the performance of the driving pump is predicted using CFX-10 with measured flowrates and pump rotational velocities. Though there is some difference between trial-test and prediction results due to inadequate motor data, it is thought that the tendency is reasonable. It is found that CFX-10 is useful to predict a mixed-flow pump.

차량 주행제어를 위한 신경회로망을 사용한 주행패턴 인식 알고리즘 (Driving Pattern Recognition Algorithm using Neural Network for Vehicle Driving Control)

  • 전순일;조성태;박진호;박영일;이장무
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.505-510
    • /
    • 2000
  • Vehicle performances such as fuel consumption and catalyst-out emissions are affected by a driving pattern, which is defined as a driving cycle with the grade in this study. We developed an algorithm to recognize a current driving pattern by using a neural network. And this algorithm can be used in adapting the driving control strategy to the recognized driving pattern. First, we classified the general driving patterns into 6 representative driving patterns, which are composed of 3 urban driving patterns, 2 suburban driving patterns and 1 expressway driving pattern. A total of 24 parameters such as average cycle velocity, positive acceleration kinetic energy, relative duration spent at stop, average acceleration and average grade are chosen to characterize the driving patterns. Second, we used a neural network (especially the Hamming network) to decide which representative driving pattern is closest to the current driving pattern by comparing the inner products between them. And before calculating inner product, each element of the current and representative driving patterns is transformed into 1 and -1 array as to 4 levels. In the end, we simulated the driving pattern recognition algorithm in a temporary pattern composed of 6 representative driving patterns and, verified the reliable recognition performance.

  • PDF

광 간섭계를 이용한 광 듀오바이너리 송신기의 전송 성능 향상에 관한 조건 연구 (Requirements for Improvement in Transmission Performance for an Optical Delay Interferometer based Optical Duobinary Transmitters)

  • 이동수
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.119-123
    • /
    • 2010
  • 마크-젠더 변조기와 광 간섭계를 이용한 10Gb/s 광 듀오바이너리 송신기의 전송 성능을 고찰하였다. 전송 거리를 증가시키기 위해서 전송 시스템이 받는 영향을 변조기의 구동 전압비와 광 간섭계의 시간 지연 관점에서 컴퓨터 모의실험을 통하여 이론적 분석을 하였다. 구동 전압비를 줄이고 부분 비트 시간 지연을 최적화하여 보다 향상된 전송 성능을 확인하였다.

진동신호 분석을 통한 DPRMs의 성능평가 (Evaluation of Performance of a DPRMs by the Vibration Signal Analysis.)

  • 최영삼;신창호;정진태;한송수;이상헌;이계영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.788-792
    • /
    • 2004
  • In this study, the performance of the DPRMs is evaluated and the measurement precision for the pile driving is presented. The DPRMs is a visual-measurement system for the pile rebound and the penetration movement using a high speed line-scan camera. But the measurement errors of the DPRMs are caused by the strong impact for the pile driving. Therefore, the DPRMs should guarantee its measurement values for the pile driving. For this reason, the performance of the DPRMs by the vibration signal analysis is studied. It is found from this study that the measurement values of the DPRMs are reliable.

  • PDF

최단시간 제어기를 이용한 구동장치의 정상상태 오차개선 (Improvement of Steady-state Error in a Driving System with Time-optimal Controller)

  • 이성우;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제22권9호
    • /
    • pp.861-869
    • /
    • 2012
  • This paper presents a high performance position controller in a driving system using a time optimal control which is widely used to control driving systems to a desired reference position or velocity in minimum response time. The main purpose of this study is an improvement of transient response performance rather than steady-state response comparing with another various control strategies. In order to improve the performance of time optimal control, we tried to find the cause of the steady-state error in the driving system we have already made up and also suggest the newly modified type of time optimal control method in this paper.

Lyapunov 안정성을 이용한 구동장치의 강인 최단시간 제어기 설계 (Robust Near Time-optimal Controller Design for a Driving System Using Lyapunov Stability)

  • 이성우;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제22권7호
    • /
    • pp.650-658
    • /
    • 2012
  • This paper proposes a high performance position controller for a driving system using a time optimal controller which has been widely used to control driving systems to achieve desired reference position or velocity in a minimum response time. The main purpose of this research lies in an improvement of transient response performance rather than that of steady-state response in comparison with other control strategies. In order to refine the scheme of time optimal control, Lyapunov stability proofs are incorporated in a controller of standard second order system model. This scheme is applied to the control of a driving system. In view of the simulation and experiment results, the standard second order system model exhibits better minimum-time control performance and robustness than double integral system model does.