• Title/Summary/Keyword: driving forces

Search Result 364, Processing Time 0.029 seconds

Haptic Display in the Virtual Cooperative Workspace (가상협동공간에서의 Haptic Display)

  • 류성모;최혁렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.284-289
    • /
    • 1995
  • This paper presents a haptic display of a cooperative work between the networked multiple users. Excluding the possibility of large timedelay among the users, it is presented the way of configuring individual haptic display systems including the computation of interaction forces, joint driving forces of haptic devices and simulation of the virtual objects. A haptic display system is developed consisting of two haptic display devices operated by two remote users and experimental results to show the validity of the proposed method are also presented.

  • PDF

Dynamic analysis of a launcher under impulsive forces (충격력을 받는 발사대의 동역학적 해석)

  • 이병훈;유완석;김준호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.84-91
    • /
    • 1993
  • The dynamic behaviors of a launcher under impulsive forces are analyzed. All the components of the system, ie ; chassis, turret, cage and suspension parts, are modeled as rigid. The dynamic analysis code, which is developed with the formulae describing the system equations of motion in terms of relative quantities, is used to carry out the analysis. The results show the dynamic responses of chassis and cage when the driving constraints are imposed on turret and cage.

  • PDF

Energy Efficient Electric Vehicle Driving Optimization Method Satisfying Driving Time Constraint (제한 주행시간을 만족하는 에너지 효율적인 전기자동차 주행 최적화 기법)

  • Baek, Donkyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.39-47
    • /
    • 2020
  • This paper introduces a novel system-level framework that derives energy efficient electric vehicle (EV) driving speed profile to extend EV driving range without additional cost. This paper first implements an EV power train model considering forces acting on a driving vehicle and motor efficiency. Then, it derivate the minimum-energy driving speed profile for a given driving mission defined by the route. This framework first formulates an optimization problem and uses the dynamic programming algorithm with a weighting factor to derive a speed profile minimizing both of energy consumption and driving time. This paper introduces various weighting factor tracking methods to satisfy the driving time constraint. Simulation results show that runtime of the proposed scaling algorithm is 34% and 50% smaller than those of the binary search algorithm and greedy algorithm, respectively.

Study of Effect of Tractive Force on Bicycle Self-Stability (구동력을 고려한 자전거 안정성에 관한 연구)

  • Souh, Byung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1319-1326
    • /
    • 2012
  • This study focuses on the influence of tractive forces on the self-stability of a bicycle. The eigen-value analysis of the self-stability of a passive rider control linear bicycle model can be used to analyze the self-stability. A linear bicycle model with front and rear driving forces is developed. The influence of tractive forces on the self-stability is identified by using the developed model. A nonlinear multi-body bicycle model is used to confirm the results of the linear analysis.

A Non-recursive Formulation of Dynamic Force Analysis in Recursive Multibody Dynamics (순환 다물체동역학에서의 비순환적인 동하중해석 공식)

  • Kim, Seong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.809-818
    • /
    • 1997
  • An efficient non-recursive formulation of dynamic force analysis has been developed for serially connected multibody systems. Although derivation of equations of motion is based on a recursive dynamic formulation with joint relative coordinates, in the proposed formulation, dynamic forces such as joint reaction forces and driving force are computed non-recursively for specified joints. The efficiency of the proposed formulation has been proved by the operational count and the CPU time measure, comparing with that of the conventional recursive Newton-Euler formulation. A simulation of 7-DOF RRC robot arm has been carried out to validate solutions of reaction forces by comparing with those from a commercial dynamic analysis program DADS.

A Biomechanical Analysis in the Neck Injury according to the Position of Read Restraint During Low Speed Rear-End Impacts (저속 정후면 추돌시 머리구속장치 위치에 따른 목 상해에 관한 생체 역학적 연구)

  • Jo Huichang;Kim Youngeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.132-139
    • /
    • 2005
  • The driving position of head restraints and the relative risk of neck injury were studied in the computer simulation. MADYMO human model with the detail neck model was used to define the magnitude and direction of internal forces acting on the cervical spine during rear-end impact and to determine the effect of the initial position of the occupant's head with respect to the head restraints. Maximum reaction forces were generated during the head contact to the restraint and relatively large forces were generated at each spinal components in lower cervical spine in proportion to backset and height distance increasement.

A Study on Ultra Precision Rotational Device Using Smooth Impact Drive Mechanism (스무즈 임팩트 구동 메커니즘을 이용한 초정밀 회전장치에 관한 연구)

  • Lee, Sang-Uk;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.140-147
    • /
    • 2008
  • This paper represents an ultra precision rotational device where the smooth impact drive mechanism (SIDM) is utilized as driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction part that is attached to the piezoelectric element. This device was designed to drive the rotational disk using slip-slip motion mechanism instead of stick-slip motion mechanism occurred in conventional impact drive mechanism. Experimental results show that the angular velocity is increased in proportion to the magnitude and frequency of supplied voltage to piezoelectric element and decreased as the preload is increased. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V.

Analysis of the Friction Characteristics of Parking Brake for Large Size Excavator (대형 굴삭기용 주차 브레이크의 마찰 특성 분석)

  • Lee, Y.B.;Kim, K.M.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.5-10
    • /
    • 2012
  • The parking brake is one of the essential units embedded in track driving motor for forward and backward motion of an excavator. It is composed of multi-friction discs. When the hydraulic motor stops, the multi-friction discs closely stick to the facing discs by acting of multi-spring forces. So, the friction forces generate the braking force by compressing the cylinder barrel of hydraulic motor. In this study, we combined the multi-friction discs to two kinds of spring which have different spring force, and the maximum torque measured at the rotational starting point of hydraulic motor through gradually increasing the rotational torque of load side hydraulic motor by use of 1 and 2 sheets of friction plates. And, under this experimental condition, the maximum coefficient of static friction and the characteristics of paper friction sheet were analyzed. The obtained experimental results will be applied to the design of parking brake system for producing large size excavator in the 85-ton weight class.