• Title/Summary/Keyword: driver electronics

Search Result 836, Processing Time 0.036 seconds

a-Si Gate Driver with Alternating Gate Bias to Pull-Down TFTs

  • Kim, Byeong-Hoon;Pi, Jae-Eun;Oh, Min-Woo;Tao, Ren;Oh, Hwan-Sool;Park, Kee-Chan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1243-1246
    • /
    • 2009
  • A novel a-Si TFT integrated gate driver circuit which suppresses the threshold voltage shift due to prolonged positive gate bias to pull-down TFTs, is reported. Negative gate-to-drain bias is applied alternately to the pull-down TFTs to recover the threshold voltage shift. Consequently, the stability of the circuit has been improved considerably.

  • PDF

A gate driver circuit for IGZO TFTs driven by two clock signals

  • Kim, Yeon Kyung;Kim, Joon Dong;Lym, Hong Kyun;Kim, Sang Yeon;Oh, Hwan Sool;Park, Kee Chan
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.179-183
    • /
    • 2012
  • In this paper, a gate driver circuit for In-Ga-Zn-O thin-film transistors (TFTs) driven by only two clock signals is reported. In this circuit, the TFTs are turned off with a negative $V_{GS}$ by the two clock signals. As a result, it works properly and suppresses power consumption increase even though the TFT $V_T$ shifts in the negative direction.

Design of Source Driver for QVGA-Scale LDI Using Mixed Driving Method (Mixed Driving 방식을 이용한 QVGA급 LDI의 Source Driver 설계)

  • Kim, Hak-Yun;Ko, Young-Keun;Lee, Sung-Woo;Choi, Ho-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.40-47
    • /
    • 2009
  • In this paper, we present the design of a source driver of QVGA scale TFT-LCD driver IC which uses a mixed driving method and performs $\gamma$-correction to improve image. The source driver with 240 RGB ${\times}$ 320 dots resolution drives a TFT-LCD panel through 720 channels and implements 262k colors using 18-bit RGB data format. The mixed driving method is a mixture the channel amp. driving method with high drivability and the gray amp. driving method with small area, which remarkably reduces channel driver areas. The driver has been designed using the $0.35{\mu}m$ Magnachip embedded DRAM technology and simulated using the HSPICE simulator. The results show that our source driver operates well with y-correction and the channel driver has $17{\mu}s$ channel driving time with only 78 driving amplifiers and control logic.

A Novel Data Driver for Passive Matrix Organic Light-emitting Devices with High Gray Scale Images utilizing a High Uniform Current

  • Shin, Hong-Jae;Kwack, Kae-Dal;Kim, Tae-Whan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1398-1400
    • /
    • 2005
  • A novel data driver for passive matrix organic lightemitting devices (PM-OLEDs) with high gray scale images was designed. The proposed circuit consisted of a main current bias circuit as well as sample & hold circuits in each channel of the data driver to compensate a current offset. These results indicate that a data driver designed by using the current offset compensation technique holds promise for poten tial applications in PM-OLED displays with high gray scale images.

  • PDF

Design of a Two-Stage Driver for LED MR16 Retrofit Lamps Compatible with Electronic Transformers

  • Yim, Sungwon;Lee, Hyongmin;Lee, Bongjin;Kang, Kyucheol;Kim, Suhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Drivers for LED MR16 retrofit lamps need to be compatible with the dimmers and electronic transformers which originally operated with the halogen lamps to be replaced. We present a two-stage MR16 LED driver consisting of a boost converter in the first stage and a buck converter in the second stage. Our design has been analyzed in the frequency domain using simulations to demonstrate that it effectively suppresses the high-frequency components of the AC output of the electronic transformer. Experiment results with a driver prototype verify the simulation results as well as dimmability.

A Study on Design of High Speed-Low Voltage LVDS Driver Circuit Using BiCMOS Technology (고속 저 전압 BiCMOS LVDS 회로 설계에 관한 연구)

  • Lee, Jae-Hyun;Yuk, Seung-Bum;Koo, Yong-Seo;Kim, Kui-Dong;Kwon, Jong-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.621-622
    • /
    • 2006
  • This paper presents the design of LVDS(Low-Voltage-Differential-Signaling) driver circuit for Gb/s-per-pin operation using BiCMOS process technology. To reduce chip area, LVDS driver's switching devices were replaced with lateral bipolar devices. The designed lateral bipolar transister's common emitter current gain($\beta$) is 20 and device's emitter size is 2*10um. Also the proposed LVDS driver is operated at 2.5V and the maximum data rate is 2.8Gb/s approximately.

  • PDF

A Direct AC Driver with Reduced Flicker for Multiple String LEDs

  • Kim, Junsik;Park, Shihong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.390-396
    • /
    • 2015
  • This paper proposes a method to reduce flicker when running an AC-power direct-drive type multiple string LED driver IC. The proposed method greatly decreases flicker using one capacitor and P-type MOSFET transistor (PMOS). The flicker index (FI) was reduced by over 40% through experiments, and less than half of the conventional external components are used in the passive valley fill circuit, which gives an advantage in the cost and utilization in the design of LED lighting modules. The 0.35 um 700 V BCD process was used to manufacture this LED driver.

Dual Path Magnetic-Coupled AC-PDP Sustain Driver with Low Switching Loss

  • Lee Jun-Young
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.205-213
    • /
    • 2006
  • A cost-effective magnetic-coupled AC-PDP sustain driver with low switching loss is proposed. The transformer reduces current stress in the energy recovery switches which affects circuit cost and reliability. The turns-ratio can be used to adjust the sustain pulse slopes which affect gas discharge uniformity. Dividing the recovery paths prevents abrupt changes in the output capacitance and thereby switching losses of the recovery switches is reduced. In addition, the proposed circuit has a more simple structure because it does not use the recovery path diodes which also afford a large recovery current. By reducing the current stress and device count in the energy recovery circuit, the proposed driver may have decreased circuit cost and improved circuit reliability.

Multi-channel Current Balancing Single Switch LED Driver for LED Backlight (LED Backlight를 위한 다채널 전류평형 단일스위치 LED 구동회로)

  • Hwang, Sang-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.320-327
    • /
    • 2016
  • We propose a multi-channel current-balancing single switch light-emitting diode (LED) driver for a 3D TV. Conventional LED drivers require non-isolated DC/DC converters as many as the number of LED channels, whereas the proposed LED driver needs only one power switch and several balancing capacitors instead of expensive non-isolated DC/DC converters. Therefore, the proposed driver features a simple structure with low cost and high efficiency. In particular, because its power switch can be turned off under the zero-current switching condition, the proposed driver has desirable advantages, such as improved electromagnetic interference characteristics and high efficiency. Moreover, it only uses a small number of DC blocking capacitors with no additional active devices for the current balancing of multi-channel LEDs. Therefore, the proposed driver exhibits high reliability and cost effectiveness. To confirm the validity of the proposed driver, we perform a theoretical analysis and present design considerations and experimental results obtained from a prototype that is applicable to a 46" LED TV.

High Step-Down Multiple-Output LED Driver with the Current Auto-Balance Characteristic

  • Luo, Quanming;Zhu, Binxin;Lu, Weiguo;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.519-527
    • /
    • 2012
  • A high step-down multiple-output LED driver is proposed in this paper. Firstly, the derivation of the driver with dual-output is presented and its operation principle and steady state performance are analyzed in detail. Secondly, a high step-down N-channel LED driver is proposed and its current auto-balance characteristic and step-down ratio are analyzed. Finally, an experimental prototype is built and the experimental results are given. The theoretical analysis and experimental results show that the proposed driver has the following virtues: First, if load balancing is achieved, the voltage gain is 1/N that of a Buck driver, where N is the number of channels. Second, each output automatically has an equal output current, without requiring more current close-loop control circuits than a Buck driver. Last, the voltage stresses of the switches and diodes are lower than those of a Buck driver, meaning that lower voltage switches and diodes can be used, and a higher efficiency can be expected.