• 제목/요약/키워드: driveline

검색결과 81건 처리시간 0.025초

컴퓨터를 이용한 트랙터 -로터리 전동 라인의 최적 설계 (II) -최적 설계 - (Computer Aided-Optimum Design of Tractor-Rotary Power Driveline (II) - Optimum Design -)

  • 류일훈;김경욱;김대철
    • Journal of Biosystems Engineering
    • /
    • 제22권2호
    • /
    • pp.105-116
    • /
    • 1997
  • Using the design variables and conditions reported in the rut part of this paper, an analysis and optimum design of the tractor-rotary power driveline were carried out. The optimum design method involved 1 variable, 2 variable and multiple variable analysis performed as requested in the design process. In order to evaluate the effects of the design variables on the power transmission performance a sensitivity analysis were also conducted. the results indicated that the length and link point of the upper link, the upper hitch point of the implement master and the location of the implement input connection affect most significantly the driveline performance. The optimum design improved the performance of an exampled tractor-rotary driveline by 93% in terms of cosine ratio.

  • PDF

최저속주행시 동력전달계의 비틀림진동 저감을 위한 클러치특성 연구 (A Study on Clutch-disc Characteristics for the Torsional Vibration Reduction of the Drive-Line at Creeping)

  • 정태진;홍동표;태신호;김상수
    • 한국자동차공학회논문집
    • /
    • 제3권2호
    • /
    • pp.102-111
    • /
    • 1995
  • The non-periodic fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by smoothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. Computer simulation of the driveline is a useful investigative tool on studying the torsional characteristics of the clutch-disc. In this paper, a dynamic model for the automotive driveline was developed, and the engine torque of the model were evaluated with experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics for reducting the torsional vibration at creeping.

  • PDF

4WD 차량의 주행 차체진동 개선을 위한 Driveline 최적화 (Optimization of 4WD Driveline for Improvement of Body Vibration in Driving Condition)

  • 이재운;민경재;정승균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.861-865
    • /
    • 2001
  • Generally the noise and vibration characteristics of 4WD vehicle is closely related to the characteristics of driveline such as bending mode, torsional mode, unbalance and nonuniformity of propeller shaft. In this paper the 4WD vehicle which has body vibration problem in high speed driving condition was tested. The sources of the body vibration and its transfer path are investigated by experimental approach. According to the experimental assessment, the body vibration is caused by the nonuniformity of joint of propeller shaft. And this paper presents a kinematic model of a vehicle driveline for the optimization of a driveline characteristics. Finally the optimized result of the drive line has been verified through the experiment.

  • PDF

승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰 (An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline)

  • 김영흡;박동훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.105-111
    • /
    • 2008
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

  • PDF

승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰 (An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline)

  • 김영흡;박동훈
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.243-250
    • /
    • 2009
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

차량 NVH개선 설계를 위한 샤시 구동계의 Driveline Test Bench 구성 및 CAE 해석 (Modeling and CAE Simulation of Chassis Driveline Test Bench for Vehicle NVH Improvement)

  • 김기주;주형준;이용헌;배대성;성창원;백영남;손일선
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.114-119
    • /
    • 2009
  • The authors have investigated the NVH problems of drive system in full vehicle test. However it is difficult to define the NVH problems of driveline system. Since it is hard to measure the rotating part and it is vague that only the drive system induces the NVH problem. Vibration in a driveline is presented in this paper. In the experiment, the rear sub-frame and propeller shafts and axle were composed and mounted with rubber each other. For applying the vibration input instead of the torsional vibration effect of an engine, the shaker was taken. In particular, torsional vibration due to fluctuating forced vibration excitation across the joint between driveline and rear sub-frame was carefully examined. Accordingly, the joint response was checked from experiments and the FE-simulation using FRF (frequency response function) analysis was performed. All test results were signal processed and validated against numerical simulations. In present study, the new test bench for measuring the vibration signal and simulating the vehicle chassis system was proposed. The modal value and the mode shape of components were analyzed using the CAE model to identify the important components affecting driveline noise and vibration. It could be reached that the simplified test bench could be well established and be used for design guide and development of the vehicle chassis components.

농업용 트랙터 PTO 전동라인의 래틀 소음 분석 (Analysis of the PTO Driveline Rattle Noise on an Agricultural Tractor)

  • 안다빈;신인경;한현우;손관희;박영준
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.45-54
    • /
    • 2019
  • In this study, we analyze the rattle noise of a power takeoff (PTO) driveline and develop a PTO driveline resonance model. We measured the rattle noise of the PTO driveline on the output shaft and, by analyzing the rattle noise in the time domain, we determine that the engine expansion stroke period matches the sound pressure of rattle noise. This finding helped us demonstrate that the rattle noise is caused by the collision between the PTO driving gear and the gear driven by the engine expansion stroke; the torsional vibration caused by this collision is affected by the angular velocity fluctuation of the PTO drive shaft. By measuring the angular velocity of the PTO drive shaft, we confirm that the angular velocity fluctuation of the engine flywheel tends to excessively amplify the PTO drive shaft angular velocity fluctuation. We conclude that the resonance, which occurs when the operating frequency of the engine is close to the natural frequency of the tractor power transmission system, causes the excessive angular velocity fluctuation of the PTO drive shaft. We performed a modal analysis of the PTO driveline resonance and, using the characteristic equation, we show that the resonance occurs when the engine rotation speed is close to 850 rpm, which matches the natural frequency of the PTO driveline.

안티-백래시 기어를 이용한 엔진 직결식 PTO 전동 라인의 치타음 감소 (Reduction of Rattle Noise in a Direct-Engine PTO Driveline Using an Anti-backlash Gear)

  • 심성보;박영준;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제32권3호
    • /
    • pp.137-144
    • /
    • 2007
  • An anti-backlash gear was developed to reduce the rattle noise generated from the gearbox of a direct-engine PTO driveline of agricultural tractors under idling. A pair of gears using the anti-backlash gear as driven part was modeled and verified. Using the verified model, a computer simulation was conducted to investigate the effects of design parameters of the anti-backlash gear on the reduction of rattle noise. The optimum values of the design parameters were also determined by the computer simulation. The optimized anti-backlash gear was then manufactured and installed on the experimental PTO driveline for the performance test. Measurement of rattle noise was made to evaluate its performance before and after the driven gear of the PTO gearbox was replaced by the optimized anti-backlash gear. Results of the study were as follows: The optimum values of the design parameters, spring constant and deformation, may be determined by a relationship: $$k{\ge}\frac{4364.7}{150{\delta}-23.564}$$ The optimized anti-backlash gear reduced the rattle noise maximally by 16.9 dBA. This concluded that it would be most effective to use the optimized anti-backlash gear to eliminate the rattle noise in the PTO driveline.

주행중 가속페달의 급조작시 승용차의 진동특성 해석 (An Analysis on the Vibration Characteristic of a Automobile at the Sudden Change of an Accelerator under Traveling)

  • 홍동표;정태진;김상수;태신호
    • 소음진동
    • /
    • 제4권3호
    • /
    • pp.353-363
    • /
    • 1994
  • The non-preiodic fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration hs become a significant problem along with the requirements of higher performance. The shuffle(tip-in, tip-out) is the transient vibration phenomenon of a vehicle which appears at the sudden change of an accelerator under traveling. By executing of an experiment and a simulation using a model, it has become possible to obtain the design parameter of a driveline for the torsional vibration. This paper presents an experimental and theoretical research on the transient vibration phenomenon of a vehicle which appears at the sudden change of an accelerator under traveling. A dynamic model for the automotive driveline was developed, and all parameters of the mmdel were evaluated with experimental data. The results are as follows: (1) The lower the gea ratio of the transmission is, the more the transient vibration phenomenon of a vehicle appears clearly. (2) The transient vibration phenomenon of a vehicle is affected by the design parmeter of the driveline.

  • PDF

이산 칼만 필터를 이용한 구동 출력 토크 추정 (Driveline Output Torque Estimation Using Discrete Kalman Filter)

  • 김기우
    • 한국자동차공학회논문집
    • /
    • 제20권4호
    • /
    • pp.68-75
    • /
    • 2012
  • This paper presents a study on the driveline output torque estimation using a discrete Kalman filter. The in-situ output shaft torque is first measured by a non-contacting magneto-elastic torque transducer. The linear state-space system equations are first derived and the discrete Kalman filter is designed based on the Kalman filter theory to recover the driveline output torque contaminated by random noises. In addition to using torque measurement, the estimation of the output torque using two angular velocities: the output and wheel, is also conducted. The experimental results show that the discrete Kalman filter can be effective for not only removing the random noise in output torque but also estimating the output torque without torque measurement.