• Title/Summary/Keyword: driveline

Search Result 81, Processing Time 0.03 seconds

Evaluation of Torsional Vibration Isolation Damper in Automotive Transmissions Based on In-situ Torque Measurement (토크 측정을 이용한 차량 변속기용 비틀림 진동 절연 댐퍼 평가)

  • Kim, Gi-Woo;Jang, Jae-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.377-382
    • /
    • 2012
  • This paper presents a proof-of-concept study on the evaluation of torsional vibration isolation performance through in-situ output torque measurement by using a non-contacting magneto-elastic torque transducer installed in the vehicle driveline system. The de-trending processing is first conducted to extract the torsional vibration from the measured driveline output torque. In order to estimate the transmissibility, primary performance indicator of a vibration isolator, the magnitude of transmitted torsional vibration with different frequencies is compared. From the conservative estimation results, the torsional damper built in a lock-up clutch of a torque converter is identified to be a vibration isolator. The evaluation results show that the fluid damping by torque converter outperforms the vibration isolation function of a torsional damper, and the isolation performance needs to be enhanced.

Vibration Characteristics of a Motorcycle Body (이륜차 차체의 진동특성)

  • 박보용
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.169-176
    • /
    • 1998
  • This paper presents the vibration characteristics of a motorcycle body frame. In order to study the excitation mechanism. for example, of handle vibration, discrete models and finite element model are developed for the calculation of natural frequencies and mode shapes of the driveline and body. which can lead to the resonances. Experiments are also conducted to compare with the analytical results From the various kinds of vibration reduction methods, the technical realizable one is presented to reduce the handle vibration responses at the start of driving.

  • PDF

Computer Simulation of Powertrain Forced Torsional Vibration (차량주행시 동력전달계의 강제진동 해석)

  • 최은오;안병민;홍동표
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.853-860
    • /
    • 1997
  • For this study, the multi-degree of freedom analysis model of torsional vibration was developed. This model is combined with mass moment of inertia and torsional spring in two wheel drive and four wheel drive vehicle. We compared and analyzed torsional vibration characteristics by natural frequencies and mode shapes which are obtained by free vibration analysis of this model. And we studied torsional vibration contribution of driveline elements by performing the forced vibration analysis of engine excitation torque. The validity of this model is demonstrated by the field test. The reduction effect of the torsional vibration along the driveline design factor is presented by the analytical results.

  • PDF

Analysis of the Dynamic Characteristics of A Passenger Car Automatic Transmission (승용차용 자동변속기의 동특성 해석)

  • 김영흡;박찬일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.172-181
    • /
    • 1997
  • The dynamic characteristics during gear ratio change including the disturbance of output torque has been one of the most important issues in the study of automatic transmissions of passenger cars. In this paper, to investigate the dynamic characteristics of a passenger car automatic transmission during gear ratio change, a dynamic model of the driveline of a passenger car focused on the automatic transmission is proposed and the dynamic simulation program is developed. The results of the simulation show good agreements with the experimental data, which process the use fullness of the dynamic model and the simulation of the driveline.

  • PDF

Development of Algorithm for Advanced Driver Assist based on In-Wheel Hybrid Driveline (인휠 전기 구동 기반의 능동안전지원 알고리즘 개발)

  • Hwang, Yun-Hyoung;Yang, In-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.1-8
    • /
    • 2017
  • This paper presents the development of an adaptive cruise control (ACC) system, which is one of the typical advanced driver assist systems, for 4-wheel drive hybrid in-wheel electric vehicles. The front wheels of the vehicle are driven by a combustion engine, while its rear wheels are driven by in-wheel motors. This paper proposes an adaptive cruise control system which takes advantage of the unique driveline configuration presented herein, while the proposed power distribution algorithm guarantees its tracking performance and fuel efficiency at the same time. With the proposed algorithm, the vehicle is driven only by the engine in normal situations, while the in-wheel motors are used to distribute the power to the rear wheels if the tracking performance decreases. This paper also presents the modeling of the in-wheel motors, hybrid in-wheel driveline, and integrated ACC control system based on a commercial high-precision vehicle dynamics model. The simulation results obtained with the model are presented to confirm the performance of the proposed algorithm.