• Title/Summary/Keyword: driveline

Search Result 81, Processing Time 0.028 seconds

Characteristics of transmission efficiency in power driveline of agricultural tractors

  • I. H. Ryu;Kim, D. C.;Kim, K. U.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.132-138
    • /
    • 2000
  • Complex gear shifting and high speed-reduction ratio reduce the transmission efficiency in power driveline of agricultural tractors. According to a field test, the power transmission efficiency of a tractor in transporting operations was estimated about 70%. However, the actual efficiency was found by the experiment to fluctuate in a range of 56 to 87%. Therefore, the constant efficiency model commonly used for a simulation of power drivelines is not likely to simulate its performance more accurately. In order to predict power transmission efficiency more accurately, a new model was proposed and the new concepts of the maximum efficiency and sticking torque were introduced. The error mean between the measured and the predicted efficiencies was about 2.3% in mean. The new model reflecting the transmission characteristics in the power driveline of tractors could be used to analyze and predict the power transmission performance of tractors more accurately.

  • PDF

Vibration Analysis of Driveline with Propeller Shaft Supported by Center Bearing when the Vehicle Starts (추진축이 센터베어링으로 지지된 차량 구동계의 출발시 진동해석)

  • 이창노;김효준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1043-1048
    • /
    • 2002
  • This paper considers the vibration problem of vehicle driveline which consists of two propeller shafts and the center bearing. The excessive vibration occurs at the center bearing when the vehicle starts to run. Using the kinematic constraints at the universal joint between two propeller shafts, we develop an one d.o.f model which describes the radial motion of the center bearing. We find out the vibration occurs at the specific vehicle speed corresponding to the natural frequency of the model. Comparing the simulation results with test results we also show that the vibration at low vehicle speed is caused primarily by the joint angle and secondarily by the mis-aligned yoke flange rather than by the unbalance.

  • PDF

System Identification of In-situ Vehicle Output Torque Measurement System (차량 출력 토크 측정 시스템의 시스템 식별)

  • Kim, Gi-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • This paper presents a study on the system identification of the in-situ output shaft torque measurement system using a non-contacting magneto-elastic torque transducer installed in a vehicle drivline. The frequency response (transfer) function (FRF) analysis is conducted to interpret the dynamic interaction between the output shaft torque and road side excitation due to the road roughness. In order to identify the frequency response function of vehicle driveline system, two power spectral density (PSD) functions of two random signals: the road roughness profile synthesized from the road roughness index equation and the stationary noise torque extracted from the original torque signal, are first estimated. System identification results show that the output torque signal can be affected by the dynamic characteristics of vehicle driveline systems, as well as the road roughness.

Characteristics of Power Efficiency of Tractor Driveline (트랙터 전동라인의 전동효율 특성 분석)

  • 류일훈;김대철;김경욱
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2002
  • According to the field test, the transient power transmission efficiency of a tractor driveline fluctuated in a range of 56 to 86% and the mean value was about 72.5%. Therefore, the constant efficiency model commonly used for a simulation of power performance was not proper far predicting such a variable of efficiency. In order to predict power efficiency more accurately, new concepts of the maximum efficiency and drag torque were introduced and a new model based on the these concepts was proposed. The difference between measured and model-predicted efficiencies was about 1.5% in average with a standard deviation of 1.1%. The new power efficiency model was expected to enhance the accuracy of predicting power transmission efficiencies of tractor drivelines.

Vibration Analysis of Driveline with Propeller Shaft Supported by Center Bearing when the Vehicle Starts Up (센터 베어링으로 지지된 추진축을 갖는 구동계의 차량 출발시 진동해석)

  • Lee, Chang-Ro;Kim, Hyo-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.929-934
    • /
    • 2002
  • This paper considers the vibration Problem of vehicle driveline which consists of two propeller shafts and the center bearing. The excessive vibration occurs at the center bearing when the vehicle starts to run. Using the kinematic constraints at the universal joint between two propeller shafts, we developed an one d.o.f model which describes the radial motion of the center bearing. We found out that the vibration occurs at the specific vehicle speed corresponding to the natural frequency of the model. Comparing the simulation results with test results we also show that the vibration at low vehicle speed is caused primarily by the feint angle and secondarily by the mis-aligned yoke flange rather than by the unbalance.

Driveline Infections Incidence According to Dressing Methods for Patients with Left Ventricular Assist Device Implantation (좌심실보조장치 수술 환자의 드레싱 방법에 따른 드라이브라인 감염 실태)

  • Choi, Nam Gyung;Choi, Su Jung;Choi, Ji Yeon;Park, Sun Hee
    • Journal of Korean Clinical Nursing Research
    • /
    • v.28 no.2
    • /
    • pp.167-176
    • /
    • 2022
  • Purpose: Driveline infection (DLI) is one of the major adverse events of Left Ventricular Assist Device (LVAD). The purpose of this study was to explore the incidence of DLI according to the driveline dressing methods. Methods: This study was a retrospective cohort study that investigated the medical records of 75 patients who implanted LVAD from January 2015 to December 2020 at a hospital in Seoul, Korea. Traditionally, sandwich dressing method was applied until October 2019, after which newly winded dressing method was adopted for driveline dressing to LVAD patients. The outcome variables were compared between sandwich dressing method applied group (n=41) and winded dressing method applied group (n=34). The follow-up period for DLI was 1 year. Results: When compared participants' characteristics, there was no difference between the two groups, except the type of LVAD device. The incidence of DLI was 17.1% in sandwich dressing group, while no infection was found in winded dressing group (p=.011). Conclusion: Although there were difference in the LVAD devices, it is considered that winded dressing contributed to the reduction of DLI. Further research on standardized dressing methods was required for DLI prevention in Korea.

A Study on Clutch Torsional Characteristics for the Torsional Vibration Reduction at Driving (주행시 비틀림진동 저감을 위한 클러치 비틀림특성 연구)

  • 정태진;홍동표;태신호;윤영진;김상수
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.75-83
    • /
    • 1995
  • The fluctuation of the engine torque appears to be the major source of the torsional vibration of the automotive driveline. The reduction of this torsional vibration has become a significant problem, due to an increase in the fluctuation of the torque of recent light weighted and high powered engines, along with the requirements of higher performance. The torsional vibration of the automotive driveline can be reduced by smoothing the fluctuation by adjusting the torsional characteristics of the clutch-disc. This paper presents an experimental and theoretical research on the clutch-disc torsional characteristics for the reduction of the torsional vibration at driving. The effects of clutch-damper on diminishing the torsional vibration were investigated experimentally. A dynamic model for the automotive driveline was developed, and the engine torque of the model were evaluated with experimental data. By executing a simulation using the model, it has become possible to obtain the clutch-disc torsional characteristics and the clutch-disc torsional characteristics for reducing the torsional vibration has been suggested. The results are as follows: (1) By exceuting simulations using nonlinear model of four degrees of freedom, a design technique to determine the clutch-disc torsional characteristics for reducing the torsional vibration at driving was developed. (2) The influence of barious torsional characteristics of the clutch has been studied in examining design parameters, which indicates that the domain to minimize the torsional vibration at driving depends on the characteristics of the clutch-damper, i. e., spring constant and hysteresis.

  • PDF

Theoretical Analysis of Geared Dynamic Characteristics in a Torsional System (회전 시스템 내 기어 동역학적 특성에 대한 이론적 해석)

  • Cho, Sung-Min;Ahn, Min-Ju;Son, Yu-Sun;Yoon, Jong-Yun;Lyu, Sung-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.1 s.79
    • /
    • pp.1-6
    • /
    • 2007
  • In the field of the system dynamics related to the vibration characteristics, there are lots of examples introduced for the translational system, however the analysis of the torsional systems such as driveline in the automobile is rare compared with the translational system. The purpose of this study is to show the simple concepts for the torsional system analysis and explain how to adjust the mathematical methods for the geared motions, which can be applied to the driveline of the automobile. In order to do it, there are several systematical approaches described about how the sub-system motions can be understood with the mathematical descriptions. Based upon this fundamental study, several torsional system modeling methods will be suggested. Therefore, the characteristics of the torsional system and the gear motions will be explained, which can be adjusted in a further study as a next step.

Evaluation of Bending Fatigue Testing of Austempered Ductile Iron Spur Gears (오스템퍼링 구상흑연주철 평기어의 굽힘피로시험평가에 관한 연구)

  • Lv, Jian Hua;Zhou, Rui;Xu, Yang;Qin, Zhen;Zhang, Qi;Lyu, Sungki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.1-7
    • /
    • 2020
  • An experimental evaluation of bending fatigue strength for austempered ductile iron (ADI) spur gears was performed using a Zwick fatigue tester. The gear material was manufactured using vertical continuous casting, resulting in the radius of the graphite grains being smaller. The stress-number of cycles curve (S-N curve) for the bending fatigue strength of the ADI spur gears thus manufactured, without any specific surface treatments, was obtained using post-processing software. It was observed that when the reliability was 50%, the allowable root stress was 610 MPa. was calculated using an analytical method as well as the finite element method, and the difference between the values calculated using the two methods is only 7%. This study provides a reliable basis to rate the reliability design of small gearboxes in automation in the future.

A Study on the Reduction of Differential Vibration of FR Passenger Car (후륜구동 승용차의 디퍼렌셜 진동저감에 관한 연구)

  • 최은오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.316-321
    • /
    • 1997
  • The purpose of this study is to reduce the vibration noise of differential gear by reducing torque fluctuation of drive pinion shaft which causes vibration noise of differential gear in rear wheel drive vehicles. For this we developed multi-degree of freedom analysis model in which mass moment of inertia and torsional spring combined, the validity of the simulation model was checked by the field test and we examined the influence of torsional vibration of driveline elements by performing forced vibration analysis of engine excitation torque. We studied the methods for reducing torsional vibration of driveline according to the design factor of propeller shaft and examined the effects reducing vibration differential gear by applying flexible coupling.

  • PDF