• Title/Summary/Keyword: drip irrigation

Search Result 95, Processing Time 0.034 seconds

Effects of Drip Irrigation Treatment on the Quality of 4- and 8-year-old Prunus × yedoensis Matsum. Seedlings in a Container Nursery (컨테이너 재배에서 점적 관수처리가 왕벚나무 4, 8년생 묘목의 품질에 미치는 영향)

  • Yoon, Jun-Hyuck;Jin, Eon-Ju;Bae, Eun-Ji
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.394-404
    • /
    • 2022
  • This study was conducted to optimize the amount of drip irrigation for Prunus×yedoensis Matsum., one of the major medium-sized landscaping trees used mainly for streetscapes and as ornamentals. The experiment was conducted in a container nursery, where we assessed the growth and physiological characteristics of 4- and 8-year-old seedlings watered at different rates (x) by a drip irrigation system. The relative growth rates (based on height and root collar diameter (RCD) measurements) were highest at 288 and 416 L/year/tree for the 4- and 8-year-old containerized seedlings, respectively. These age and treatment combinations also produced significantly different dry weight and seedling quality index values, indicating good growth. The two age groups had significantly different total root lengths, root diameters, and root volumes under these respective irrigation treatments. In addition, the 4-year-old containerized seedlings irrigated at 288 L/year/tree and the 8-year-old containerized seedlings irrigated at 416 L/year/tree had the highest activations in their chlorophyll contents. Overall, the results (differences in irrigation amounts affect the seedlings morphological relative growth, biomass growth, seedling quality, and physiological reaction) indicate that the optimal irrigation amounts for container-grown Prunus×yedoensis are 288 L/year/tree for 4-year-old (RCD class, 3cm) and 416 L/year/tree for 8-year-old (RCD class, 7 cm) containerized seedlings.

Effect of Subsurface Drip Pipes Spacing on the Yield of Lettuce, Irrigation Efficiency, and Soil Chemical Properties in Greenhouse Cultivation (지중 점적관수 호스 설치 간격이 상추 수량, 관수량 및 토양 화학성에 미치는 영향)

  • Park, Jin Myeon;Lim, Tae Jun;Lee, Seong Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.683-689
    • /
    • 2012
  • This research was carried out to investigate the effect of installation spacing of subsurface drip irrigation pipe on the mineral content, nutrient uptake, yield of lettuce, water requirement for irrigation, and soil chemical properties in greenhouse cultivation. Semi-forcing and retarding culture were implemented in this experiment, with four treatments containing overhead spray irrigation and three subsurface irrigation lateral spacing intervals of 30, 40, 50 cm at a depth of 30 cm from soil surface, respectively. Each mineral content of lettuce grown under subirrigation system did not show significant difference between treatments, however the uptake of nutrients was lower at 50 cm-distance. The yield was largest in 30 cm-subirrigation (SI), followed by 40 cm-SI, overhead spray, and 50 cm-treatment. Water requirement for irrigation was highest in overhead spray, and it was in reverse proportion to the distance of irrigation pipes. $NO_3$-N content in the soil, at a depth of 10 cm, showed a higher value in 50 cm-SI, followed by 40 cm-SI, overhead spray and 30 cm-SI. Exchangeable K content was highest in 50 cm-SI, Mg was highest in 40 cm-SI, and Ca was lowest in 30 cm-SI. In conclusion, the lettuce yield was not different between 30 and 40 cm-SI, but water requirement for irrigation was lower as the distance of irrigation pipes was further. And it seems to be needed more precise research on this theme, because crop yield and the dynamics of soil minerals in subsurface irrigation can vary with the depth and distance of irrigation pipes, dripper, water flow depending on the soil texture, and plant response to soil minerals.

Effect of Drip Irrigation on Soil Salinity Control and Growth of Cabbage at the newly reclaimed tidal lands in Korea (점적관수가 토양염농도 제어와 배추의 생육에 미치는 영향)

  • Sohn, Yong-Man;Jeon, Geon-Yeong;Song, Jae-Do;Lee, Jae-Hwang;Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.492-499
    • /
    • 2009
  • Effect of drip irrigation on soil salinity control and growth of vegetable crops was studied in the three reclaimed lands of Korea in 2007. Drip irrigation was done one or two times per month for reduction of salt stress by using vinyl hose with tiny holes laid on ridge surface under black plastic film mulch during growing season of cabbage and chinese cabbage. It was observed that drip irrigation was generally effective to soil salinity control, but soil salinity variation of some place was not fully solved to lower down under level of free salt stress. It is also considered that high salinity of runoff water spilled out from cultivation ridge plays another key role for soil salinity management. Consequentially, this soil salinity variation might be one of factors brought low average yield and low commercial ratio of agricultural products. Relation between soil salinity and head growth of cabbage and chinese cabbage was well expressed as logarithmic function. Surface soil EC to reach at 50% of growth reduction to the heaviest head can be estimated was $6.1dS^{\circ}{\S}m^{-1}$ for cabbage and $5.7dS\;m^{-1}$ for chinese cabbage transplanted at optimum season.

Influence of Grass Cover on Water Use and Shoot Growth of Young 'Fuji'/M.26 Apple Trees at Three Soil Water Regimes in Double Pot Lysimeters (토양수분영역을 달리한 double pot-lysimeter에서 자라는 '후지'/M.26 사과나무의 수분이용과 신초 생장에 미치는 잔디피복의 영향)

  • Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.357-364
    • /
    • 1999
  • This study measures the influence of grass cover on water use and shoot growth of apple trees growing under different soil water regimes in temperate climate conditions and evaluates monthly crop coefficients of such conditions during four months of the growing season in 1995. To do so, double pot lysimeter experiments of 3-year-old Fuji' apple (Males domestica Borkh.) trees under a transparent rain shield were designed and installed. Trees were triplicate under three soil water regimes: (A) drip-irrigation at -50 kPa of soil matric potential (IR50). (B) drip-irrigation at -80 kPa of soil matric potential (IR80), and (C) constant shallow water table at 0.45 m below the soil surface (WT45). In each treatment, two soil surface conditions were tested: the soil surface bare, and covered with turf grasses. Mean monthly water use increased with increasing soil matric potential for drip irrigation and was greatest in the WT45 treatment. Monthly crop coefficients increased linearly in time for drip-irrigated apple trees ($r^2$ values of $0.953^{***}$ for turf grass-covered system and of $0.862^{***}$ for bare surface system), while those obtained in the WT45 treatment fluctuated, Duncan's multiple range tests for shoot growth showed that grass-covered IR50 was most favorable to apple trees. while bare surface waterlogged situation was most adverse at least in part due to a lack of oxygen in the root zone. Mid-season leaf Kjeldahl-N was higher in drip-irrigated apple trees than in WT45 trees, while soil Kjeldahl-N was not different irrespective of treatments.

  • PDF

Application of Subsurface Drip Fertigation System to Increase Growth and Yield of Maize (옥수수의 생육 및 수량 증대를 위한 지중점적 관비 시스템의 적용)

  • Jong Hyuk Kim;Yeon Ju Lee;Il Rae Rho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.197-206
    • /
    • 2023
  • This study was conducted to investigate how maize (Zea maize L.) growth and yield were affected by irrigation and fertigation using a subsurface drip system. The system consisted of a buried (40 cm underground) drip pipe that can be used in a semi-permanent manner without affecting agricultural work on the ground. The amount of water required for the fertigation treatment was determined to be 24.3 tons 10a-1 for the sandy loam soil used in this experimental field. Fertigation treatments based on the previously calculated 24.3 tons 10a-1 were carried out as topdressing applications. They were applied through the subsurface drip system with the following fertilizer concentration (nitrogen only, written in kg 10a-1: N 4, N 6, N 8, N 10 ). The other treatments were irrigation only and control (non-treatment). The results indicated that the N 8 treatment was the most effective, increasing yield by 30% and 14% compared with the control and irrigation treatments, respectively. These results highlight the effectiveness of fertigation (N 8 kg 10a-1) at V6 and R1 stage as a form of topdressing fertilization using a subsurface drip system for achieving a high yield and stable maize production.

Effect of PE Film Mulching and Irrigation Method on the Growth, Yield and Antioxidant Activity for Potatoes Grown in Winter Season at Saemangeum Reclaimed Land (새만금 간척지에서 감자 겨울재배시 비닐멀칭 및 관수방법이 생육, 수량 및 괴경의 항산화 활성에 미치는 영향)

  • Choi, Weon-Young;Cho, Kwang-Min;Kim, Sun;Jeong, Jae-Hyeok;Lee, Su-Hwan;Lee, Kyeong-Bo;Lee, Geon-Hwi;Park, Ki-Hun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.63-69
    • /
    • 2015
  • This study was conducted to measure the effect of PE film mulching and irrigation methods on the growth, yield and antioxidant activity of potatoes tubers, in order to examine the possibility of cultivating potatoes in winter season in vinyl greenhouse on the reclaimed tidal land with weak ground inside the sea wall currently completed. The test was conducted on the sandy loam soil (Munpo series), and its salt concentration was 0.42% at the time of planting. The emergence speed per kind of PE film mulching was in the order of black > coloration > transparent > green color, with the black color showing the fastest speed. The temperature change during a day per kind of PE film mulching was in the order of transparent > coloration > green > black color. As for the salt concentration in the soil for each different way of water management, the salt concentration in the treatment of drip irrigation with 1 week interval was lower than that drip irrigation with 2 weeks interval. As for the growth of above-aerial part, plant length was higher, number of tiller and leaves were more and dry weight of above-aerial part was larger in the treatment of drip irrigaton with 1 week interval than drip irrigation with 2 weeks interval. As for the yield of potatoes depending on each way of water management, the yield in the treatment of drip irrigation with 1 week interval was more than drip irrigation with 2 weeks interval. The yield for each different kind of PE film mulching in the weekly drip-irrigation management section was in the order of transparent ${\geq}$ black ${\geq}$ coloration ${\geq}$ green color. In both of total phenol content and DPPH free radical activity experiments, the content and activity were higher with pear color vinyl treatment.

Quality Evaluation of Irrigation Scheduling on Upland Crops by Crop Development Rates (주요 밭작물의 생육단계에 따른 관개 스케줄링의 효율성 평가)

  • Kim, Dong-Hyun;Kim, Jongsoon;Kwon, Soon Hong;Park, Jong Min;Choi, Won-Sik;Kwon, Soon Gu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.333-341
    • /
    • 2021
  • Irrigation scheduling is a water management strategy of applying the proper amount of water in a plant's root zone at the right time to maximize profit. We conducted an experimental evaluation of the response of soybean, sorghum, and sesame to an irrigation scheduling scheme. The soil water contents were adjusted in the root zone between 20% and 28% to reflect changes in crop water consumption. The other ones fixed at 25% during the whole growing season were compared to evaluate the effectiveness of irrigation scheduling. Surface drip irrigation (SDI) were employed as an irrigation method. For all three crops, the evapotranspiration (ET) was the greatest at flowering stage (6.93 mm), followed by vegetative growth stage (5.00 mm) and maturity stage (2.53 mm). The irrigation amount was significantly reduced by 21.8% (soybean), 22.2% (sorghum), and 16.1% (sesame), respectively, compared with the ones at constant soil water content treatment. Their water use efficiency (WUE) were also much higher than the controls: 2.65-fold increase at soybean, 1.82-fold increase at sorghum, and 1.47-fold increase at sesame. These results showed that an effective irrigation scheduling on upland crops (soybean, sorghum, sesame) could increase crop yield while minimizing water use.

2-Dimensional Moisture Migration Modeling in Drip-Irrigated Root Zone (점적관개(點滴灌漑)에서 토양수분 이동 현상에 대한 2차원 모델 개발 연구)

  • Ro, Hee-Myong;Kim, Seung-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.4
    • /
    • pp.314-327
    • /
    • 1997
  • A 2-dimensional soil water flow model was developed to describe the migration of soil moisture in drip-irrigated root zone employing cylindrical coordinate system. Several natural phenomena were incorporated into the model such as transpiration, various types of evaporation, and ponding due to the increase in irrigation rate. Model was solved numerically by finite difference method. The model was verified in several ways leading to the conclusion that it can describe the soil moisture migration in drip-irrigated root zone fairly well. From sensitivity analysis, vertical migration of soil moisture was found to move faster than the horizontal one, which indicates the vertical location just under the dripping point are adequate for measuring points of soil moisture. The pot shape of soil moisture in irrigated zone was proved to be caused by evaporation at the soil surface. Also, it was found that the hydraulic conductivity has greatly influential to the soil moisture migration, and that the soil moisture continues to migrate vertically after irrigation stops.

  • PDF

Effects of Soil Moisture Content according to Irrigation Methods in Culture on Storability of Cucumber(Cucumis sativus L.) Fruit (관수방법에 따른 토양내 수분함량의 차이가 수확후 오이의 저장에 미치는 영향)

  • 박권우;강호민;장매희;권영삼
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.74-79
    • /
    • 1995
  • This study was made to investigate the effects of soil moisture content according to irrigation methods on the storability and quality of cucumber. The fresh weight loss of cucumber fruit harvested in drip irrigation plot was more than that in conventional irrigation plot at both 13$^{\circ}C$ and 24$^{\circ}C$ storage temperature. Dry weight ratio decreased during storage, and was higher in conventional irrigation plot than drip irrigation plot both 13$^{\circ}C$ and 241 storage. The decrease of dry weight ratio was higher at 24$^{\circ}C$ than 13$^{\circ}C$. Vitamin C was not influenced by soil moisture content, but decreased during storage at 13$^{\circ}C$ and 24$^{\circ}C$ The decrease of vitamin C at 24$^{\circ}C$ in 8 days after storage was twice as much at 13$^{\circ}C$. Firmness was measured differently in two parts of cucumber ; fruit stalk and blossom part. The firmness of fruit stalk part was higher than that of blossom part. This phenomena was observed continuously at until final day at 13$^{\circ}C$ and 24$^{\circ}C$ storage. But the difference of firmness was not showed in soil moisture content. Vitamin C, firmness and other quality characteristics were not influenced by soil moisture content during cultivation. The different soil moisture content according to irrigation methods did not affect the storability and quality of cucumber.

  • PDF

Distribution of Inorganic N from Fertigated and Broadcast-applied 15N-Urea along Drip Irrigation Domain (점적관수시 관비와 표면시비된 중질소 표지요소의 행동비교)

  • Yoo, Sun-Ho;Jung, Kang-Ho;Ro, Hee-Myong;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.4
    • /
    • pp.292-301
    • /
    • 2001
  • The objectives of this study were to measure the changes in soil moisture regimes and the distribution patterns of inorganic N derived from the fertigated $^{15}N$-labeled urea, and compare them with the results obtained from broadcast-applied soil under the same drip irrigation domain. In fertigated soil, a $^{15}N$-labeled urea solution of $117mg\;N\;L^{-1}$ was applied by surface drip irrigation for 4 weeks. In broadcast-applied soil, no the other hand, 4 g of $^{15}N$-labeled urea(1.87 g N) mixed thoroughly with 5 kg of soil was placed on the surface of packed soil. Soil water status was controlled by drip irrigation scheduled at soil matric potential of -50 kPa. A calibrated time-domain reflectometry probe was installed in the soil vertically 15 cm apart from a drip emitter to control drip irrigation. About 60% of urea-derived inorganic nitrogen was remained in the top zone between 0 and 10 cm depth of fertigated soil, while, most of the inorganic nitrogen (91%) was accumulated in the top zone of broadcast-applied soil. Of inorganic nitrogen derived from urea, the percentage of $NO_3{^-}$ was much higher for fertigation (99%) than for surface application (62%). The relatively lower recovery of urea-derived inorganic nitrogen of broadcast-applied urea-N (51%) than that of fertigated urea-N (89%) was attributable to enhanced $NH_3$ volatilization.

  • PDF