• Title/Summary/Keyword: drinking groundwater

Search Result 236, Processing Time 0.024 seconds

Technical and Economical Assessment of Adsorption and Reverse Osmosis for Removal of Ammonia from Groundwater of Kathmandu, Nepal (네팔 카트만두 지하수에서 암모늄 제거를 위한 이온 교환 및 역삼투의 기술 및 경제 평가)

  • Kunwar, Pallavi;Ahn, Jaewuk;Baek, Youngbin;Yoon, Jeyong
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.174-182
    • /
    • 2020
  • The permissible limit of ammonia concentration in drinking water recommended by the World Health Organization (WHO) is 1.5 mg/L. However, in the case of groundwater in Kathmandu, Nepal, the concentration of ammonia fluctuates dramatically from 0 to 120 mg/L at different locations and groundwater depths (Chapagain et al., 2010). Such a high concentration of ammonia causes aesthetic problems in drinking water, such as bad taste and odor; hence, prior treatment is required. In Kathmandu, half of the population utilizes groundwater, which is also employed for drinking water, but owing to a lack of knowledge of household water filters, residents of Kathmandu tend to depend greatly on commercially available jar water than on the installation of a proper household filtration method. Thus, in our study, we employed adsorption and reverse osmosis (RO) as two of the most viable decentralized/household treatment options to address the issue of high contamination of ammonia in drinking water. We evaluated their performances from technical and the economic perspectives using synthetically prepared groundwater at varying ammonia concentrations (50 mg/L and 15 mg/L). Consequently, it was found that adsorption via ion exchange (IE) resin was a comparatively better ammonia removal technology than RO, with 100% ammonia removal even after regeneration; the removal by RO was limited to up to 90%. Furthermore, our study suggests that IE is the most suitable ammonia removal technology for places with lower water consumption (< 50 L/day), whereas RO seemed to be a cost-effective technology for places with higher water consumption, where the daily water demand exceeds 50 L/day. Lastly, these assessments suggest that installing a suitable household treatment system would be more efficient and sustainable from both technical and economic points of view than purchasing commercially bottled water.

Immobilization of Arsenic in Tailing by Fenton-like reaction (펜톤유사반응을 이용한 광미중에 비소의 불용화)

  • 정익재;최용수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.127-130
    • /
    • 2002
  • Recently, the contamination with heavy metals in closed mines has been seriously considered since it can disturb human health through the polluted drinking-water and crops. Therefore, the concerns about the remediation of polluted land and treatment technology for hazardous matters have been accelerated. However, any of practical methods for treatment and/or remediation have not been yet suggested. In this research, a novel technology was studied to immobilize arsenic in tailings and soils disturbed by mining. In this technology, Fenton-like reaction were applied to immobilize arsenic in tailings. In the examination of Fenton-like reaction using pure pyrite, $H_2O$$_2$ and arsenic, the concentrations of extracted arsenic and iron were reduced up to 90 and 75%, respectively From the result of SEM-EDS, the Immobilization of arsenic was observed on the surface of pyrite. Thus, it can be said that the coating and/or adsorption prevents the extraction of arsenic.

  • PDF

Monitoring of Stream water and Groundwater Contamination at the Ilgok landfull Site in kwangju, Korea (광주지역 일곡 매립지 주변에서의 하천수 및 지하수 오염 모니터링)

  • 차종문
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.485-493
    • /
    • 1999
  • In order to dermine the degree of contamination for the Ilgok landfill site, stream water, groundwater and stream sediment samples were collected in 1998 and 1999, and analyzed for physico-chemical properties. The stream water contains significanr concentrations of TDS $HCO_3^-$and $NO_3^-$, and ground-water is polluted by $NO_3^-$ up to the drinking water standard from landfill leachate. From the point of the horizontal movement of elements, stream water IL-2 at the conjunction point with landfill leachate reached the most high concentrations of $HCO_3^-,Cl^-,Na^+, K^+, NO_3^-,Mg{^2+}$ and $SO_4^{2-}$stream water Il-3 shows the high concentrations of $Ca^{2+}, Pb^{2+}$ and $Mg^{2+}$. The optimum contamination indicator of Ilgok landfill site is $HCO_3^-, C^l-, Na^+, Mn^{2+}$ and TDS from the calculation of contamination factor.

  • PDF

Benefit of the Drinking Water Supply System in Office Building by Rainwater Harvesting: A Demo Project in Hanoi, Vietnam

  • Dao, Anh-Dzung;Nguyen, Viet-Anh;Han, Mooyoung
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Vietnam is a developing country with the rate around 5%-6% per year, especially in urban areas. Rapidly developed urban areas lead to stress for infrastructure and the water supply is also stressed. In Hanoi city, total water capacity from the manufactories is around one million cubic meters per day and almost the entire main water source is groundwater but it is not enough to supply all of Hanoi's people, especially in the summer. A demo project is implemented in Hanoi University of Civil Engineering (HUCE) to produce drinking water by using the rainwater and membrane system and supply for people. In this project, rainwater is collected on the rooftop of the lecture building with an area of around $500m^2$ and $100m^3$ volumetric rainwater tanks. Afterwards, the rainwater is treated by the micro-membrane system and supplied to the tap water. Total cost for construction, technology and operation in the first year is around USD 48,558. In the long-term (15 yr) if HUCE invests in the same system, with $20m^3$ volumetric storage tank, it can provide drinking water for 500 staffs in every year. The cost of investment and operation for this system is lower than 30% compared to buying bottled water with the price USD 1.8/bottle. The drinking water parameters after treatment are pH, 7.3-7.75; turbidity, 0.6-0.8 NUT; total dissolved solids, 60-89 mg/L; coliform, 0; heavy metal similar with water quality in the bottle water in Vietnam.

Evaluation of Groundwater Quality in Crystalline Bedrock Site for Disposal of Radioactive Waste (방사성폐기물 처분을 위한 결정질 기반암의 지하수 수질 평가)

  • Lee, Jeong-Hwan;Jung, Haeryong;Cheong, Jae-Yeol;Park, Joo-Wan;Yun, Si-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.4
    • /
    • pp.275-286
    • /
    • 2014
  • This study evaluated the evolution stage and origin of chemical components of 12 boreholes at crystalline bedrock using multivariate statistical and groundwater quality analyses. Groundwater types are mostly belonged to Na(Ca)-$HCO_3$ and Ca-$HCO_3$ types, indicating that directly reaction of cation exchange ($Ca^{2+}{\rightarrow}Na^+$) prevailed. The degree of groundwater evolution is included the range from low to intermediate stage based on field and laboratory analytical conditions. As a result of multivariate statistical analysis, a typical indicator of groundwater contamination, $NO_3$-, has the positive correlation with $Na^+$ and $Cl^-$. The origin of sea spary ($Cl^-$) has the positive correlation with $Na^+$, $SO{_4}^{2-}$, $Mg^{2+}$, and $K^+$, while not correlation with $Ca^{2+}$, $Fe^{2+}$, $HCO_3{^-}$, $F^-$, and $SiO_2$. The concentration of $Cl^-$ and $NO_3{^-}$ belongs to general quality of groundwater and not exceeds over the Korean standard for drinking water. And the negative values of saturation index of minerals are calculated with chemical components in groundwater. Therefore, most of chemical components of groundwater in the study area are originated from natural process between rock and groundwater, whereas some of components are derived from sea spary and anthropogenic sources related to agricultural activities.

Effect of Well Depth, Host Rocks and Mineralization Zone on Hydrochemical Characteristics of Groundwater in the Umsung Area (음성지역 지하수의 수리화학적 특성에 대한 심도, 모암 및 광화대의 영향)

  • Jeong Chan Ho;Lee Byung Dae;Sung Ig hwan;Cho Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.469-485
    • /
    • 2004
  • The purpose of this study is to investigate the hydrochemical characteristics of groundwater in the Umsung area, and to elucidate the effect of host rock type, well depth and mineralization zone on the groundwater chemistry. The geology of the study area consists of Jurassic granite and Cretaceous sedimentary rocks, which are bounded by a fault. Most of shallow groundwaters exploited in the Jurassic granite area are used for agricultural purpose, whereas the deep groundwaters in the Cretaceous sedimentary rocks are used for a drinking water. The shallow groundwater shows weak acidic pH, the electrical conductivity ranging from $142\;to\;903\;{\mu}S/cm$, and the chemical type of $Ca-HCO_3\;to\;Ca-Cl(SO_4,\;NO_3)$. A few of shallow groundwaters are contaminated by nitrate, and show high concentration of Fe, Mn and Zn, that reflects the effect of a mineralization zone. The deep groundwater shows neutral to weak alkaline pH, higher electrical conductivity than that of shallow groundwater, and the chemical type of $Ca-HCO_3$. The seepage water from the abandoned mines does not have the characteristics such as acidic pH, high concentration of heavy metals and high sulfate content. The hydrogen and oxygen isotopes of groundwater indicates an altitude effect of the recharge area between deep groundwater and shallow groundwater. In conclusion, the chemical composition of groundwater complicately reflects the effects of their host rocks, well depth, agricultural activity and mineralization zone in the study area.

A Study of Hydrogeological Properties Concerning to Groundwater Interference between Wells in the Yeongdo Island, Pusan, Korea (부산직할시 영도지역의 정호간 지하수 간섭에 관한 수리지질 특성 연구)

  • 김항묵
    • Journal of the Korean Professional Engineers Association
    • /
    • v.27 no.6
    • /
    • pp.72-84
    • /
    • 1994
  • This is about an environmental study of groundwater interference by hydrodynamic dispersion between the well A and well C in Dongsam-dong, the Yeongdo Island, Pusan, Korea. The groundwater in the study wells come from the fracture zones deeply seated in welded lapilli rhyodacitic tuff of the Late Cretaceous Yucheon Group. The boring depth at the well A is 190 meters, and the optimal pumping rate of the well A is about 100 cubic meters per day therein. The fractured aquifers in impermeable welded tuff show the conjugate fracturing type and are of anisotropic. The aquifers along two fracture zones in the well A are 80 and 100 meters in depth, respectively. It is not suggested that those fractured aquifers are simply connected between the well A and C. The sea level fluctuation by ebb and high tides in a day is not effective to the groundwater table in the well A. The pumping for 15 days at the well A doesn't give rise to any changes of the groundwater levels in the neighbor well C. The radius of influence of the well A is measured as less than 200 meters. The measuring electric conductivity for the test of salt tracer doesn't testify any relationship between the well A and the well C. There is the main difference between the well A and the well C on the basis of the water analysis of those wells. the well A is located in the high content zone of salt much over the standard value for drinking, whereas the other wells B. C. D are in the low content area of salt below the standard value. It is elucidated for the high content zone of salt in Yeongdo around the well A to have been uplifted over 20 meters.

  • PDF

Predicting As Contamination Risk in Red River Delta using Machine Learning Algorithms

  • Ottong, Zheina J.;Puspasari, Reta L.;Yoon, Daeung;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.55 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Excessive presence of As level in groundwater is a major health problem worldwide. In the Red River Delta in Vietnam, several million residents possess a high risk of chronic As poisoning. The As releases into groundwater caused by natural process through microbially-driven reductive dissolution of Fe (III) oxides. It has been extracted by Red River residents using private tube wells for drinking and daily purposes because of their unawareness of the contamination. This long-term consumption of As-contaminated groundwater could lead to various health problems. Therefore, a predictive model would be useful to expose contamination risks of the wells in the Red River Delta Vietnam area. This study used four machine learning algorithms to predict the As probability of study sites in Red River Delta, Vietnam. The GBM was the best performing model with the accuracy, precision, sensitivity, and specificity of 98.7%, 100%, 95.2%, and 100%, respectively. In addition, it resulted the highest AUC of 92% and 96% for the PRC and ROC curves, with Eh and Fe as the most important variables. The partial dependence plot of As concentration on the model parameters showed that the probability of high level of As is related to the low number of wells' depth, Eh, and SO4, along with high PO43- and NH4+. This condition triggers the reductive dissolution of iron phases, thus releasing As into groundwater.

Evaluation of Natural Attenuation by Addition of Fumarate as Carbon Source and Gene Analysis in Groundwater Sample (지하수 중 탄소원으로 fumarate 주입과 유전자분석을 통한 질산성질소 자연저감도 평가)

  • Park, Sunhwa;Kim, Hyun-Gu;Kim, Sohyun;Lee, Min-Kyeong;Lee, Gyeong-Mi;Kim, Young;Kim, Moon-Su;Kim, Taeseung
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2014
  • In the results of monitoring nitrate concentration in more than 8,000 groundwater wells around agro-livestock, the average and maximum nitrate concentration was 9.4 mg/L and 101.2 mg/L, respectively. Since about 31% of the monitoring wells was exceed the quality standard for drinking water, nitrate control such as remediation or source regulation is required to conserve safe-groundwater in South Korea. Typical nitrate-treatment technologies include ion exchange, reverse osmosis, and biological denitrification. Among the treatment methods, biological denitrification by indigenous microorganism has environmental and economic advantages for the complete elimination of nitrate because of lower operating costs compared to other methods. Major mechanism of the process is microbial reduction of nitrate to nitrite and nitrogen gas. Three functional genes (nosZ, nirK, nirS) that encode for the enzyme involved in the pathway. In this work, we tried to develop simple process to determine possibility of natural denitrification reaction by monitoring the functional gene. For the work, the functional genes in nitrate-contaminated groundwater were monitored by using PCR with specific target primers. In the result, functional genes (nosZ and nirK) encoding denitrification enzymes were detected in the groundwater samples. This method can help to determine the possibility of natural-nitrate degradation in target groundwater wells without multiplex experimental process. In addition, for field-remediation application we selected nitrate-contaminated site where 200~600 mg/L of nitrate is continuously detected. To determine the possibility of nitrate-degradation by stimulated-natural attenuation, groundwater was sampled in two different wells of the site and nitrate concentration of the samples was 300 mg/L and 616 mg/L, respectively. Fumarate for different C/N ratio was added into microcosm bottles containing the groundwater to examine denitrification rate depending on carbon concentration. In the result, once 1.5 times more than amount of fumarate stoichiometry required was added, the 616 mg/L of nitrate and 300 mg/L of nitrate were completely degraded in 8 days and 30 days. The nitrite, byproduct of denitrification process, was also completely degraded during the experimental period.

Health risk assessment for radon of groundwater in Korea

  • Kim, Yeshin;Kim, Jinyong;Park, Hoasung;Park, Soungeun;Dongchun Shin
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.170-170
    • /
    • 2003
  • An initial study has been conducted with Korea Institute of Geoscience and Mineral resources and National Institute of Environment Research to evaluate the distribution of radon levels and their risk levels of groundwater in Korea. Probability distribution of 616 samples was log-normal one with 1,867pCi/L as arithmetic value, 920pCi/L as median and 40,010pCi/L as maximum during iou. years(1999-2002). In addition, 10% of total samples are in excess of 4,000pCi/L, 20% in excess of 2,700pCi/L, and 30% in excess of 1,700pCi/L, and 15 samples exceeds 10,000pCi/L. Total samples are grouped into 10 areas and 5 rocks unit, and difference of concentrations among areas and rocks are statistically significant(respectively, p<0.0001). The highest area is Daejeon located in ogcheon metamorphic rocks and granitic rocks, and most of all sites with high concentration sites are located in granitic rocks. The lowest area is Jeju located in volcanic rocks. We have estimated excess cancer risks of radon based on these data. To estimate risks, first of all, use patterns of groundwater are categorized with 6 groups: for drinking, household, farming, washing cars, raising stock, and others. We considered risk only for drinking water and household water because radon is rapidly dispersed before it of other use reach human respiratory organs. We select 565 samples for risk analysis, and applied unit risk which is 6.6210-7 per pCi/L to be recommended by NAS committee. Unit risk was derived from considering radon ingestion and radon inhalation from water use. When estimating risk, we analyzed PDF of concentration and represented risk as 50 and 95 percentile values to consider uncertainty with Monte-Carlo simulation. It results in 10-4 level of their excess cancer risk and in 10-2 level in some areas with high concentration of radon. It must be monitor periodically and take adequate actions in these risky sites. We recommend that it needs to take more survey and finally set guideline for radon regulation in groundwater.

  • PDF