• Title/Summary/Keyword: drilling force

Search Result 156, Processing Time 0.027 seconds

Analysis of Cutting Force and Plastic Deformation Occurring During Machining of Ti-6Al-4V Alloy Aircraft Parts (Ti-6Al-4V 합금 항공기 부품 가공 시 발생하는 절삭추력 및 소성변형에 대한 해석)

  • Son, Hwi Jun;Kim, Seok;Park, Ki-Beom;Jung, Hyoun Chul;Cho, Young Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.25-31
    • /
    • 2022
  • Recently, investment in the aerospace industry has increased, and titanium alloys have been widely adopted for manufacturing parts in the aerospace industry. The Ti-6Al-4V alloy has high strength in high-temperature and high-pressure environments and is evaluated as a material with excellent heat, corrosion, and abrasion. However, titanium alloys are expensive, difficult to cut, and possess a large cutting load during the drilling process. In this study, the cutting force generated in the drilling process of Ti-6Al-4V alloy was verified via finite element analysis (FEM) and cutting force measurement experiments. A structural analysis was performed based on the cutting analysis data to verify the plastic deformation occurring during the drilling process of cylindrical Ti-6Al-4V alloy aircraft parts. Methods were proposed to predict the amount of deformation that occur during the manufacturing process of titanium-alloy aircraft parts and control the external environment, to minimize the amount of deformation.

A Study on Influence of the Cutting Fluid to Machinability in Deep Hole Drilling (Deep Hole Drilling에서 절삭유가 가공성에 미치는 영향에 관한 연구)

  • 장성규;이충일;전언찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1068-1072
    • /
    • 1997
  • This work deals with on investigation the influence of various additives to a base stock cutting fluid in order to develop a better deep hold drilling. This investigation has been aiming at developing an oil which gives a maximum cutting efficiency at a minimum wear rate of the tool and the guiding pads. The purpose of study is to analyze how guide pad of tools, workpiece and the change of contained quantity of extreme pressure additive in cutting fluids have effects on the hold over size of cutting hole, surface roughness of workpiece,wear rates of guide pad and roundness during the deep hole machining of SM55C with solid BTA drill by using BTA drilling system through experiment. Conclusion reached is as follows. It has been proved that the contained quantity of surphur more affects machinability than that of extreme pressure additive of chlorine of cutting fluid in BTA drilling during Deep Hole Drilling. Considering its base oil, the the contained quantity of extreme pressure assitive of surphur can be different, but it's judged that the range of 1.5 ~ 2.0% is suitable to machinability for workpiece in BTA drilling. Regarding guide pad, it's judged that the reduction of wear is possible in propotion to the contained quantity of exrreme pressure additive of chlorine against supporting of cutting force and Bumishing operation of machining parts in cutting.

  • PDF

Force Prediction and Stress Analysis of a Twist Drill from Tool Geometry and Cutting Conditions

  • Kim, Kug-Weon;Ahn, Tae-Kil
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.65-72
    • /
    • 2005
  • Drilling process is one of the most common, yet complex operations among manufacturing processes. The performance of a drill is largely dependent upon drilling forces, Many researches focused on the effects of drill parameters on drilling forces. In this paper, an effective theoretical model to predict thrust and torque in drilling is presented. Also, with the predicted forces, the stress analysis of the drill tool is performed by the finite element method. The model uses the oblique cutting model for the cutting lips and the orthogonal cutting model for the chisel edge. Thrust and torque are calculated analytically without resorting to any drilling experiment, only by tool geometry, cutting conditions and material properties. The stress analysis is performed by the commercial FEM program ANSYS. The geometric modeling and the mesh generation of a twist drill are performed automatically. From the study, the effects of the variation of the geometric features of the drill and of the cutting conditions of the drilling on the drilling forces and the stress distributions in the tool are calculated analytically, which can be applicable for designing optimal drill geometry and for improving the drilling process.

Study on drilling of CFRP/Ti6Al4V stack with modified twist drills using acoustic emission technique

  • Prabukarthi, A.;Senthilkumar, M.;Krishnaraj, V.
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.573-588
    • /
    • 2016
  • Carbon Fiber Reinforced Plastic (CFRP) and Titanium Alloy (Ti6Al4V) stack, extensively used in aerospace structural components are assembled by fasteners and the holes are made using drilling process. Drilling of stack in one shot is a complicated process due to dissimilarity in the material properties. It is vital to have optimal machining condition and tool geometry for better hole quality and tool life. In this study the tool wear and hole quality were analysed by experimental analysis using three modified twist drills and online tool condition monitoring using Acoustics Emission (AE) sensor. Helix angle and point angle influence tool performance and cutting force. It was found that a tool geometry (TG1) with high helix angle of $35^{\circ}$ with low point angle $130^{\circ}$ results in reduction in thrust force of 150-500 N range but the TG2 also perform almost similar to TG1, but when compared with the AErms voltage generated during drilling it was found that progressive rise in voltage in TG1 is less with respect to TG2 which can be attributed to tool life. In process wear monitoring was done using crest factor as monitoring index. AErms voltage were measured and correlated with the performance of the drills.

Adaptive Control by the Fusion of Genetic Algorithms and Fuzzy Inference on Micro Hole Drilling (미세드릴가공에 있어서 유전알고리즘과 퍼지추론의 합성에 의한 적응제어)

  • Paik, In-Hwan;Chung, Woo-Seop;Kweon, Hyeog-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.95-103
    • /
    • 1995
  • Recently the trends toward reduction in size of industrial products have increased the application of micro drilling. But micro drilling has still much difficulty so that the needs for active control which give adaptation to controller are expanding. In this paper initial cutting condition was determined for some sorkpieces by experiment and GA-based Fuzzy controller was devised by genetic algorithms and fuzzy inference. The fuzzy inference has been applied to the various prob- lems. However the determination of the membership function is one of the difficult problem. So we introduce a genetic algorithms and propose a self-tuning method of fuzzy membership function. Based on this intelligent control, automation of micro drilling was carried out like the cutting process of skilled machinist.

  • PDF

A Study on the Machinability Characteristics of ADI Materials for the Drilling Conditions (ADI재료의 드릴가공시 가공조건에 따른 절삭특성에 관한 연구)

  • Cho, Gyu-Jae;Jeon, Eon-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.36-44
    • /
    • 1996
  • Drilling tests were carried out austempered ductile cast iron(ADI) to clarify the factors influencing the drilling characteristics of ADI material. The machinability of material was evaluated using high speed steel drill and cobalt contained drill of 6mm diameter. The spheroidal graphite cast iron materials were austemized at 900 .deg. C for 1 hour and then wear was kept at 375 .deg. C for 2 hours. Austempered ductile cast iron contains a great deal of retained austenite which contribustes to an improvement of impact strength. In this paper, machinability of ADI was invastigated by drilling experimentation. The results obtained are as follows:a) Flank wear incresses logarithmically with the increases of cutting time and proportionally with the increases of cutting force. b) Drilling hole number of about 2 times can be educed more step feed than ordinary feed due to the high hardness of ADI material and hardness increasing ascribed to the martensite of retained austenite.

  • PDF

Characterization of Microscale Drilling Process for Functionally Graded M2-Cu Material Using Design of Experiments (실험계획법을 이용한 M2-Cu 기능성 경사 재료의 마이크로 드릴링 특성 평가)

  • Sim, Jongwoo;Choi, Dae Cheol;Shin, Ki-Hoon;Kim, Hong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this study, a microscale drilling process was conducted to evaluate the cutting characteristics of functionally graded materials. A mixture of M2 and Cu powders were formed and sintered to produce disk specimens of various compositions. Subsequently, a microscale hole was created in the specimen by using a desktop-size micro-machining system. By using design of experiments and analysis of variance, it was found that the M2-Cu composition, spindle speed, and the interactions between these two factors had significant effects on the magnitude of cutting forces. However, the influence of feed rate on the cutting force was negligible. A mathematical model was established to predict the cutting force under a wide range of process conditions, and the reliability of the model was confirmed experimentally. In addition, it was observed that increasing the wt% of Cu in an M2-Cu specimen increased the high-frequency amplitude of cutting forces.

Stabilization of the Drilling Process through Active Torque Control (능동적 토크제어를 통한 드릴공정의 안정화)

  • 김중배;이상조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2234-2241
    • /
    • 1993
  • The torque variation in drilling process represents the problems of the efficient and stable machining. In order to cope with them, the active control method is adopted to drill the workpiece under the constant cutting torque though the cutting stiffness of the workpiece or the diameter of the drill bit changes. The cutting process is modeled in the geometric viewpoint related with the feed and the number of cutting lips. And the dynamic model is approximated to the first order system for the purpose of control. The adaptive PI control is used in computer simulations and experiments. The results of the study show the validity of the drilling method with torque control.

Determination of Optimum Micro Drilling Conditions Using Experimental Design Methods (실험계획법에 의한 마이크로 드릴링 공정의 최적 절삭조건 결정)

  • 김동우;조명우;이응숙;서태일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.993-998
    • /
    • 2002
  • watches, air bearings and printed circuit hoards (PCB). However, it is not easy to determine optimum cutting conditions since the micro drilling process is very sensitive to various disturbances. Also, undesirable characteristics to optimize the micro drilling are small signal-to-noise ratios, drill wandering motions and high aspect ratios. Thus, in this study, experimental design methods are applied to determine optimum cutting conditions. Suing the methods, three cutting parameters, fred, step and curving speed are optimized to minimize thrust forces. Obtained conditions are verified through required experimental works. As the results, it is shown that the experimental methods can be applied to micro drilling processes to determine Optimum Cutting Conditions.

  • PDF