• Title/Summary/Keyword: drift ratio

Search Result 366, Processing Time 0.027 seconds

The Steady Drift Force and Moment on a Floating Body in Water of Finite Depth (유한수심에 놓인 부유체에 작용하는 시간평균 표류력 및 표류 모우먼트)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.1
    • /
    • pp.9-16
    • /
    • 1987
  • The second-order steady horizontal force and vertical moment are derived for a freely-floating body in water of finite depth. Momentum relations are used in terms of the Kochin function in the fluid region far from the body. The general results look very similar to those for deep water. The water depth is formally reflected in terms of the ratio between the phase and group velocities of incident waves. Computations are made for a Series 60 hull($C_B=0.6$) and are compared with the corresponding results of deep water. It is shown that the vertical drift moment for slender ships becomes completely free from water depth when the wave-ship length ratio is taken as parameter.

  • PDF

Seismic Performance of Low-rise Piloti RC Buildings with Concentric Core (중심코어를 가지는 저층 철근콘크리트 필로티 건물의 내진성능)

  • Yoon, Tae-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.611-619
    • /
    • 2022
  • In this study, the seismic performance of low - rise piloti buildings with concentric core (shear wall) position is analysed and reviewed based on KDS 41. The prototype is selected among the constructed low - rise piloti buildings with concentric core designed based on KBC 2005 which was used for many low - rise piloti buildings construction. The seismic performance of the building shows plastic behavior in X-direction and elastic behavior in Y-direction. The inter-story drift is lager than that of concentric core case and is under the maximum allowed drift ratio. The displacement ratio of first story is much lager the that of upper stories, and the frame structure in the first story is evaluated as vulnerable to lateral force. Therefore, low - rise piloti buildings with concentric core need the diminishment of lateral displacement and reinforcement of lateral resistance capacity in seismic design and seismic retrofit.

Simplified Analytical Model for a Steel Frame with Double Angle Connections (더블앵글 접합부를 사용한 철골조의 단순해석 모델)

  • Yang, Jae-Guen;Lee, Gil-Young;Park, Jeong-Suk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.1 s.19
    • /
    • pp.45-54
    • /
    • 2006
  • A steel frame is one of the most commonly used structural systems due to its resistance to various types of applied loads. Many studies have been conducted to investigate the effects of connection flexibility, support conditions, and beam-to-column stiffness ratio on the story drift of a frame. Based on the results of these studies, several design guides have been proposed. This research has been conducted to predict the actual behavior of a double angle connection, and to establish its effect on the story drift and the maximum allowable load of a steel frame. For these purposes, several experimental tests were conducted and a simplified analytical model was proposed. This simplified analytical model consists of four spring elements as well as a column member. In addition, a point bracing system was proposed to control the excessive story drift of an unbraced steel frame.

  • PDF

Nonlinear seismic analysis of a super 13-element reinforced concrete beam-column joint model

  • Adom-Asamoah, Mark;Banahene, Jack Osei
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.905-924
    • /
    • 2016
  • Several two-dimensional analytical beam column joint models with varying complexities have been proposed in quantifying joint flexibility during seismic vulnerability assessment of non-ductile reinforced concrete (RC) frames. Notable models are the single component rotational spring element and the super element joint model that can effectively capture the governing inelastic mechanisms under severe ground motions. Even though both models have been extensively calibrated and verified using quasi-static test of joint sub-assemblages, a comparative study of the inelastic seismic responses under nonlinear time history analysis (NTHA) of RC frames has not been thoroughly evaluated. This study employs three hypothetical case study RC frames subjected to increasing ground motion intensities to study their inherent variations. Results indicate that the super element joint model overestimates the transient drift ratio at the first story and becomes highly un-conservative by under-predicting the drift ratios at the roof level when compared to the single-component model and the conventional rigid joint assumption. In addition, between these story levels, a decline in the drift ratios is observed as the story level increased. However, from this limited study, there is no consistent evidence to suggest that care should be taken in selecting either a single or multi component joint model for seismic risk assessment of buildings when a global demand measure such as maximum inter-storey drift is employed in the seismic assessment framework.

Application of self-centering wall panel with replaceable energy dissipation devices in steel frames

  • Chao, Sisi;Wu, Hanheng;Zhou, Tianhua;Guo, Tao;Wang, Chenglong
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.265-279
    • /
    • 2019
  • The self-centering capacity and energy dissipation performance have been recognized critically for increasing the seismic performance of structures. This paper presents an innovative steel moment frame with self-centering steel reinforced concrete (SRC) wall panel incorporating replaceable energy dissipation devices (SF-SCWD). The self-centering mechanism and energy dissipation mechanism of the structure were validated by cyclic tests. The earthquake resilience of wall panel has the ability to limit structural damage and residual drift, while the energy dissipation devices located at wall toes are used to dissipate energy and reduce the seismic response. The oriented post-tensioned strands provide additional overturning force resistance and help to reduce residual drift. The main parameters were studied by numerical analysis to understand the complex structural behavior of this new system, such as initial stress of post-tensioning strands, yield strength of damper plates and height-width ratio of the wall panel. The static push-over analysis was conducted to investigate the failure process of the SF-SCWD. Moreover, nonlinear time history analysis of the 6-story frame was carried out, which confirmed the availability of the proposed structures in permanent drift mitigation.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

Analytical Performance Evaluation of Structure Reinforced with HRS Damper (고감쇠고무와 강재슬릿의 복합 댐퍼로 보강한 건축물의 해석적 성능평가)

  • Kim, Yu-Seong;Lee, Joon-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • In this study, an incremental loading test of the HRS(Hybrid Rubber Slit) damper was additionally performed to define the physical characteristics according to the incremental test results, and an analytical study was performed according to the damping design procedure by selecting an example structure. As a result of performing seismic performance evaluation before reinforcement by selecting a RC structure similar to an actual school structure as an example structure, the story drift ratio was satisfied, but some column members collapsed due to bending deformation. In order to secure the seismic performance, the damping design procedure of the HRS damper was presented and performed. As a result of calculating the amount of damping device according to the expected damping ratio and applying it to the example structure, the hysteresis behavior was stable without decrease in strength, and the story drift ratio and the shear force were reduced according to the damping effect. Finally the column members that had collapsed before reinforcement satisfied the LS Level.

Seismic Rehabilitation of Nonductile Reidorced Concrete Gravity Frame (비연성 철근 콘크리트 중력 프레임에 의한 지진 보강)

  • Dong Choon Choi;Javeed A. Munsh;Kwang W. Kim
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.116-123
    • /
    • 2001
  • This paper represents results of an effort to seismically rehabilitate a 12-story nonductile reinforced concrete frame building. The frame located in the most severe seismic area, zone 4, is assumed to be designed and detailed for gravity load requirements only. Both pushover and nonlinear time-history analyses are carried out to determine strength, deformation capacity and the vulnerability of the building. The analysis indicates a drift concentration at the $1^{st}$ floor level due to inadequate strength and ductility capacity of the ground floor columns. The capacity curve of the structure, when superimposed on the average demand response spectrum for the ensemble of scaled earthquakes indicates that the structure is extremely weak and requires a major retrofit. The retrofit of the building is attempted using viscoelastic (VE) dampers. The dampers at each floor level are sized in order to reduce the elastic story drift ratios to within 1%. It is found that this requires substantially large dampers that are not practically feasible. With practical size dampers, the analyses of the viscoelastically damped building indicates that the damper sizes provided are not sufficient enough to remove the biased response and drift concentration of the building. The results indicate that VE-dampers alone are not sufficient to rehabilitate such a concrete frame. Concrete buildings, in general, being stiffer require larger dampers. The second rehabilitation strategy uses concrete shearwalls. Shearwalls increased stiffness and strength of the building, which resulted in reducing the drift significantly. The effectiveness of VE-dampers in conjunction with stiff shearwalls was also studied. Considering the economy and effectiveness, it is concluded that shearwalls were the most feasible solution for seismic rehabilitation of such buildings.

  • PDF

System Performance Improvement of IEEE 802.15.3a By Using Time Slot Synchronization In MAC Layer (UWB MAC의 Time Slot 동기를 통한 시스템 성능 개선)

  • Oh Dae-Gun;Chong Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.84-94
    • /
    • 2006
  • In this paper, we propose the algorithm to reduce guard time of UWB MAC time slot for throughput gain. In the proposed draft by multiband ofdm alliance (MBOA), Guard time of each medium access slot (MAS) is composed of shortest inter-frame space (SIFS) and MaxDrift which is the time caused by maximum frequency offset among devices. In this paper, to reduceguard time means that we nearly eliminate MaxDrift term from guard time. Each device of a piconet computes relative frequency offset from the device initiating piconet using periodically consecutive transferred beacon frames. Each device add or subtract the calculated relative frequency offset to the estimated each MAS starting point in order to synchronize with calculated MAS starting point of the device initiating piconet. According to verification of simulations, if the frequency offset estimator is implemented with 8 decimal bit, the ratio of the wasted time to Superframe is always less than 0.0001.

Shearing Strength Properties of Bolted, Drift-Pinned Joints of the Larix Glulam - Effects of Fastener Diameter, Slenderness and End-distance on Strength Properties - (낙엽송 집성재의 Bolt, Drift Pin 접합부의 전단강도 성능 평가 - 접합구 직경, 세장비, 끝면거리가 강도에 미치는 영향 -)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.1
    • /
    • pp.69-78
    • /
    • 2008
  • Shearing strength test in tension type was investigated to determine the shear resistance of bolt and drift-pin connection of domestic larix glulam. The specimen was connected with bolt and drift-pin in the inserted plate type, and only bolt in the side plate type. The diameter of bolt and drift-pin used in the experiment are 12, 16 and 20 mm. The hole of bolt was drilled at the end-distance 5 d and 7 d. Tension load was loaded in the direction parallel to grain. The shear resistance was evaluated according to end-distance through this, the yield load was compared with the experimental yield load, using Larsen's formula. The prototype design strength is based on the yield load of end-distance 7 d and the reduction factor of end-distance 5 d was calculated. The results were as follows. 1. The average of maximum load of drift-pin connection was higher by 3~30% at the inserted type than at bolt connection with increasing diameter. In bolt connection, the average of maximum load of the side type was 1.54~2.07 times higher than that of the inserted type. In the same diameter, the average of maximum load of end-distance 7 d was higher by 8~44% than that of 5 d. 2. The bearing stress was 1.16~1.41 times higher at the inserted connection than at drift-pin connection, and 1.37~1.86 times higher at 7 d than at 5 d. Also, when the slenderness ratio was below 7.5 at drift-pin connection and below 6.0 at inserted connection, the lateral capacity was good. 3. The ratio of the experimental yield load and the predicted yield load calculated by Larsen's formula proposed by Larsen was 0.80~1.10 at inserted connection, and 0.75~1.46 at side connection. 4. When the inserted bolt connection was based on the yield load of end-distance 7 d, the reduction factor was 0.89 at 12 mm connection, 0.93 at 16 mm and 0.85 at 20 mm. The reduction factor was 0.89 at 12 mm the inserted drift-pin connection, 0.93 at 16 mm, 0.93 at 20 mm. The reduction factor was 0.79 at the side connection of the 12 mm bolt connection and 0.80 at 16 mm.