• Title/Summary/Keyword: drift index

Search Result 73, Processing Time 0.02 seconds

Scaling of design earthquake ground motions for tall buildings based on drift and input energy demands

  • Takewaki, I.;Tsujimoto, H.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.171-187
    • /
    • 2011
  • Rational scaling of design earthquake ground motions for tall buildings is essential for safer, risk-based design of tall buildings. This paper provides the structural designers with an insight for more rational scaling based on drift and input energy demands. Since a resonant sinusoidal motion can be an approximate critical excitation to elastic and inelastic structures under the constraint of acceleration or velocity power, a resonant sinusoidal motion with variable period and duration is used as an input wave of the near-field and far-field ground motions. This enables one to understand clearly the relation of the intensity normalization index of ground motion (maximum acceleration, maximum velocity, acceleration power, velocity power) with the response performance (peak interstory drift, total input energy). It is proved that, when the maximum ground velocity is adopted as the normalization index, the maximum interstory drift exhibits a stable property irrespective of the number of stories. It is further shown that, when the velocity power is adopted as the normalization index, the total input energy exhibits a stable property irrespective of the number of stories. It is finally concluded that the former property on peak drift can hold for the practical design response spectrum-compatible ground motions.

Seismic response of RC frames under far-field mainshock and near-fault aftershock sequences

  • Hosseini, Seyed Amin;Ruiz-Garcia, Jorge;Massumi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.395-408
    • /
    • 2019
  • Engineered structures built in seismic-prone areas are affected by aftershocks in addition to mainshocks. Although aftershocks generally are lower in magnitude than that of the mainshocks, some aftershocks may have higher intensities; thus, structures should be able to withstand the effect of strong aftershocks as well. This seismic scenario arises for far-field mainshock along with near-field aftershocks. In this study, four 2D reinforced concrete (RC) frames with different numbers of stories were designed in accordance with the current Iranian seismic design code. As a way to evaluate the seismic response of the case-study RC frames, the inter-story drift ratio (IDR) demand, the residual inter-story drift ratio (RIDR) demand, the Park-Ang damage index, and the period elongation ratio can be useful engineering demand parameters for evaluating their seismic performance under mainshock-aftershock sequences. The frame models were analyzed under a set of far-field mainshock, near-fault aftershocks seismic sequences using nonlinear dynamic time-history analysis to investigate the relationship among IDR, RIDR, Park-Ang damage index and period ratio experienced by the frames. The results indicate that the growth of IDR, RIDR, Park-Ang damage index, and period ratio in high-rise and short structures under near-fault aftershocks were significant. It is evident that engineers should consider the effects of near-fault aftershocks on damaged frames that experience far-field mainshocks as well.

Dependency of COD on ground motion intensity and stiffness distribution

  • Aschheim, Mark;Maurer, Edwin;Browning, JoAnn
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.425-438
    • /
    • 2007
  • Large changes in stiffness associated with cracking and yielding of reinforced concrete sections may be expected to occur during the dynamic response of reinforced concrete frames to earthquake ground shaking. These changes in stiffness in stories that experience cracking might be expected to cause relatively large peak interstory drift ratios. If so, accounting for such changes would add complexity to seismic design procedures. This study evaluates changes in an index parameter to establish whether this effect is significant. The index, known as the coefficient of distortion (COD), is defined as the ratio of peak interstory drift ratio and peak roof drift ratio. The sensitivity of the COD is evaluated statistically for five- and nine-story reinforced concrete frames having either uniform story heights or a tall first story. A suite of ten ground motion records was used; this suite was scaled to five intensity levels to cause varied degrees of damage to the concrete frame elements. Ground motion intensity was found to cause relatively small changes in mean CODs; the changes were most pronounced for changes in suite scale factor from 0.5 to 1 and from 1 to 4. While these changes were statistically significant in several cases, the magnitude of the change was sufficiently small that values of COD may be suggested for use in preliminary design that are independent of shaking intensity. Consequently, design limits on interstory drift ratio may be implemented by limiting the peak roof drift in preliminary design.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

Seismic upgrading of structures with different retrofitting methods

  • Guneyisi, Esra Mete;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • This paper presents an analytical study aimed at evaluating the seismic performance of steel moment resisting frames (MRFs) retrofitted with different approaches. For this, 3, 6 and 12 storey MRFs having four equal bays of 5 m were selected as the case study models. The models were designed with lateral stiffness insufficient to satisfy code drift and hinge limitations in zones with high seismic hazard. Three different retrofit strategies including traditional diagonal bracing system and energy dissipation devices such as buckling restrained braces and viscoelastic dampers were used for seismic upgrading of the existing structures. In the nonlinear time history analysis, a set of ground motions representative of the design earthquake with 10% exceedance probability in fifty years was taken into consideration. Considering the local and global deformations, the results in terms of inter-storey drift index, global damage index, plastic hinge formations, base shear demand and roof drift time history were compared. It was observed that both buckling-restrained braces and viscoelastic dampers allowed for an efficient reduction in the demands of the upgraded frames as compared to traditional braces.

Seismic deformation demands on rectangular structural walls in frame-wall systems

  • Kazaz, Ilker
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.329-350
    • /
    • 2016
  • A parametric study was conducted to investigate the seismic deformation demands in terms of drift ratio, plastic base rotation and compression strain on rectangular wall members in frame-wall systems. The wall index defined as ratio of total wall area to the floor plan area was kept as variable in frame-wall models and its relation with the seismic demand at the base of the wall was investigated. The wall indexes of analyzed models are in the range of 0.2-2%. 4, 8 and 12-story frame-wall models were created. The seismic behavior of frame-wall models were calculated using nonlinear time-history analysis and design spectrum matched ground motion set. Analyses results revealed that the increased wall index led to significant reduction in the top and inter-story displacement demands especially for 4-story models. The calculated average inter-story drift decreased from 1.5% to 0.5% for 4-story models. The average drift ratio in 8- and 12-story models has changed from approximately 1.5% to 0.75%. As the wall index increases, the dispersion in the calculated drifts due to ground motion variability decreased considerably. This is mainly due to increase in the lateral stiffness of models that leads their fundamental period of vibration to fall into zone of the response spectra that has smaller dispersion for scaled ground motion data set. When walls were assessed according to plastic rotation limits defined in ASCE/SEI 41, it was seen that the walls in frame-wall systems with low wall index in the range of 0.2-0.6% could seldom survive the design earthquake without major damage. Concrete compressive strains calculated in all frame-wall structures were much higher than the limit allowed for design, ${\varepsilon}_c$=0.0035, so confinement is required at the boundaries. For rectangular walls above the wall index value of 1.0% nearly all walls assure at least life safety (LS) performance criteria. It is proposed that in the design of dual systems where frames and walls are connected by link and transverse beams, the minimum value of wall index should be greater than 0.6%, in order to prevent excessive damage to wall members.

Quantitative Damage Index of RC Columns with Non-seismic Details (비내진상세를 가지는 철근콘크리트 기둥의 정량적 손상도 평가 기준)

  • Kim, Kyung-Min;Oh, Sang-Hoon;Choi, Kwang-Yong;Lee, Jung-Han;Park, Byung-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.11-20
    • /
    • 2013
  • In this paper, the quantitative damage index for reinforced concrete (RC) columns with non-seismic details were presented. They are necessary to carry out the postearthquake safety evaluation of RC buildings under 5 stories without seismic details. The static cyclic test of the RC frame sub-assemblage that was an one span and actual-sized was first conducted. The specimen collapsed by the shear failure after flexural yielding of a column, lots of cracks on the surfaces of columns and beam-column joints and the cover concrete splitting at the bottom of columns occurred. The damage levels of these kinds of columns with non-seismic details were classified to five based on the load-displacement relationship by the test result. The residual story drift ratios and crack widths were then adapted as the quantitative index to evaluate the damage limit states because those values were comparatively easy to measure right after earthquakes. The highest one among the residual story drift ratios under the similar maximum story drift ratio decided on the residual story drift ratio of each damage limit state. On the other hand, the lowest and average ones among the respective residual shear and flexural widths under the similar maximum story drift ratio decided on the residual shear and flexural widths of each damage limit state, respectively. These values for each damage limit state resulted in being smaller than those by the international damage evaluation guidelines that are for seismically designed members under the same deformations.

Change of relative fishing power index from technological development in the small yellow croaker drift gillnet fishery (참조기 유자망어업에서 어로기술개발에 따른 어획성능지수 변동)

  • SEO, Young-Il;OH, Taeg-Yun;CHA, Hyung-Kee;KIM, Byung-Yeob;JO, Hyun-Su;JEONG, Tae-Young;LEE, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.55 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The small yellow croaker (Larimichthys polyactis) is one of the representative high-class fish species in Korea. The catch of small yellow croaker in adjacent water fisheries has been continuously decreasing from 59,226 tons in 2011 to 19,271 tons in 2016. The small yellow croaker is caught by gillnet, stow net and bottom trawl, among which about 55~65% is caught by gillnet. For the sustainable use of small yellow croaker, the fishing power of small yellow croaker drift gillnet is very important. Therefore, the change of fishing power index were analyzed to identify the development of the vessel and gear technology that may have improved the fishing efficiency of the small yellow croaker drift gillnet fishery from 1960s to 2010s. Gross tonnage and horse power per fishing vessel was increased annually. The mesh size was 75.0 mm in the 1960s, but reduced to 60.6 mm in the 1980s and to 51.0 mm in the 2000s. In the 1960s, it was hauled out by manpower. However, the net hauler were modernized and supply rate was also increased since 1970. Due to the mechanization of the net hauler, the number (length) of used net gradually increased from 1.5 km in the 1960s to 7.5 km in the mid-1980s and to 15 km in 2010. Colour fish finders and positioning system were introduced and utilized from the mid-1980s. Surveys on the supply and upgrading of fishing equipment utilized visiting research. Therefore, the relative fishing power index in the small yellow croaker drift gillnet fishery increased from 1.0 in 1980 to 0.8 in 1970, to 1.1 in 1990, to 1.6 in 2000 and to 1.9 in 2010. The results are expected to contribute to reasonable fisheries stock management of the small yellow croaker drift gillnet fishery.

PHYSIOLOGIC DRIFT OF THE MANDIBULAR DENTITION FOLLOWING THE EXTRACTION OF FOUR FIRST PREMOLARS (상, 하악 제1소구치 발치 후 하악치열의 생리적 치아이동에 관한 연구)

  • Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.33-41
    • /
    • 1996
  • Retrostpective study of two groups of patients was conducted to evaluate the physiologic drift of the mandibular teeth following the extraction of four first premolars. The concept of physiologic drift, commonly referred to as 'driftodontics', following first premolar extractions has been gaining acceptance in the orthodontic community, the exact nature and amount of drift has not been adequately documented. There were also no guide lines as to when drift should be allowed to now. The purpose of this study was to quantify physiologic drift of the untreated mandibular dentition following extraction of the four first premolars during the early permanent and late permanent dentition stages. The early permanent dentition extraction sample(Group 1) included 26 Patients and the mean age at pretreatment was approximately 13.5 years. The observation period following extraction was approximately 6.96 months. The late permanent dentition extraction sample(Group 2) included 31 patients. The mean age at pretreatment was 21.3 years, followed by a observation period of 7.26 months. During the observation period, except for the extractions, no other mandibular therapy was rendered. Pre-and post-treatment lateral cephalograms and dental casts were analyzed. The obtained results were as follows 1. Group 2 showed marked changes in movements of the mandibular incisors and canines but minimal changes in molars. 2. The amount of changes in movements of the mandibular incisors and canines were significantly greater in Group 1 than in Group 2. The results showed no differences in rates of molar movements between groups. 3. Physiologic drift of the dentition produced desirable changes such as decreased Incisor Irregularity.

  • PDF

A Bayesian Approach for the Adaptive Forecast on the Simple State Space Model (구조변화가 발생한 단순 상태공간모형에서의 적응적 예측을 위한 베이지안접근)

  • Jun, Duk-Bin;Lim, Chul-Zu;Lee, Sang-Kwon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.485-492
    • /
    • 1998
  • Most forecasting models often fail to produce appropriate forecasts because we build a model based on the assumption of the data being generated from the only one stochastic process. However, in many real problems, the time series data are generated from one stochastic process for a while and then abruptly undergo certain structural changes. In this paper, we assume the basic underlying process is the simple state-space model with random level and deterministic drift but interrupted by three types of exogenous shocks: level shift, drift change, outlier. A Bayesian procedure to detect, estimate and adapt to the structural changes is developed and compared with simple, double and adaptive exponential smoothing using simulated data and the U.S. leading composite index.

  • PDF