• Title/Summary/Keyword: drift effect

Search Result 425, Processing Time 0.026 seconds

A Study on the Safe Operations of Ships under Heavy Weather Conditions in the North Pacific(I) (북태평양의 악기상조건과 선박의 안전운항에 관한 연구(I))

  • 민병언
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.1
    • /
    • pp.107-144
    • /
    • 1987
  • In cold season, ice accretion on ship, drift ice, NW winter monsoon, developed extratropical cyclones and associated cold fronts, in warm season, tropical cyclones and dense sea fogs, are encountered very frequently in the North Pacific, especially in the northwest part of it. The two areas, namely, the northwest part of the North Pacific and Burmuda Triangle in the North Atlantic are generally known as most dangerous areas in the world because its high incidence of sea cascualities. In recent years, the small fisherboats operating in the northern seas were frequently sunk in a group as they encountered ice accretion or drift ice. And ocean going vessels were also sunk frequently due to strong winds and very high seas in winter monsoon or developed cyclones and cold fronts. The purpose of this paper is to analyze the real state of heavy weather conditions such as ice accretion on ship drift, ice, typhoons and sea fogs, and also to analyse the effect of these heavy weather phenomena on the vessels at sea, thus helping mariners operate in such heavy weather conditions.

  • PDF

Motion Analyses for a Very Large Floating Structure with Dolphin Mooring Systems in Irregular Waves (불규칙파 중에서 돌핀 계류된 해상공항에 대한 운동 해석)

  • 이호영;신현경;임춘규;강점문;윤명철
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.57-62
    • /
    • 2000
  • The very large flcating structure which am be used for as airport may be as large as several kilomet wide. The first order wave forces as well as wave drift forces are very important forces on such a very large floating In the present studv, the time simulation of motion responses with dolphin-moored VLFS in waves is presented The coeffcients and wave forces involved in the equations are obtained from a three-dimensionul panel method in the frequc The horizontal drift forces and mooring forces for dolphin systems are taken into account. As for numerical example, analyses are carried out for a VLFS in irregular wave condition

  • PDF

Disturbance in the Daytime Midlatitude Upper F Region Associated with a Medium Scale Electrodynamic Vortex Motion of Plasma

  • Hegai, Valery V.;Kim, Vitaly P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.207-210
    • /
    • 2016
  • Under the assumption of the presence of a medium-scale E × B drift vortex of plasma in the daytime midlatitude F region, and using a simplified ionospheric model, we demonstrate that the E × B drift produces noticeable perturbations in the horizontal distribution of the plasma density in the upper F region. The pattern of ion density perturbations shows two separate medium scale domains of enhanced and reduced ion density with respect to the background. The E × B drift does not produce multiple small-scale ion density irregularities through plasma mixing because of the suppression effect of the field-aligned ambipolar plasma diffusion.

Story Drift of a Frame with Column Flange Bolted-Beam Web Welded Double Angle Connections (더블앵글로 접합된 골조의 수평처짐)

  • Yang, Jae-Guen;Kim, Ho-Keun;Kim, Ki-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.95-103
    • /
    • 2003
  • Frame is one of the most commonly used structural systems for the resistance of applied loads. Many researchers have recently conducted their studies to investigate the effect of several parameters such as the connection flexibility, boundary condition of each support, beam-to-column stiffness ratio. These parameters play important roles on the characteristic behavior of frames. A simplified spring model is proposed to obtain the story drifts of frames with various beam-to-column connection stiffnesses in this research. A point bracing system with adequate spring stiffness is also suggested to establish the relationship between the applied load and the resisting translational spring stiffness within the limit state of story drift.

  • PDF

The Effect of the Guard Ring around the Emitter on the Sensitivity of the Highly Sensitive Separated Drift Field Magnetotransistor (에미터 주위의 guard ring이 분리된 전계를 갖는 고감도 자기 트랜지스터의 민감도에 미치는 영향)

  • Kang, Uk-Song;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1413-1415
    • /
    • 1994
  • A novel magnetotransistor using a separated drift field with the guard ring around the emitter has been designed and fabricated. The operating principle of the proposed magnetic field sensor is based on the emitter injection modulation. The $p^+$ guard ring around the n-type emitter confines drifted electrons in the emitter, hence the induced Hall voltage in the emitter is increased. The measured relative sensitivity of the separated drift magnetotransistor with the guard ring is about 100 times larger than that without the guard ring.

  • PDF

Ion-Implanted Drift Field Silicon Solar Cell

  • Lee, Hee-Yong;Kim, Jin-Kon;Kim, Yoo-Shin
    • Nuclear Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.29-40
    • /
    • 1976
  • An investigation on the effect of electrostatic drift field which can bring an additional aid to the photogenerated carrier collection in one side of the silicon solar cell has been carried out. The drift field was produced by the gradient of boron concentration in the p-type side in virtue of the strain compensation due to the tin dopant. A new method of ion implantation which is based on the principle of chiefly radiation-enhanced diffusion is adopted for forming the p-n junction in the solar cell. The open circuit voltage and the conversion efficiency of the ion-implanted silicon solar cell sample can be figured out to be 0.44 V and 5%, respectively.

  • PDF

Role of accidental torsion in seismic reliability assessment for steel buildings

  • Chang, Heui-Yung;Lin, Chu-Chieh Jay;Lin, Ker-Chun;Chen, Jung-Yu
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.457-471
    • /
    • 2009
  • This study investigates the role of accidental torsion in seismic reliability assessment. The analyzed structures are regular 6-story and 20-story steel office buildings. The eccentricity in a floor plan was simulated by shifting the mass from the centroid by 5% of the dimension normal to earthquake shaking. The eccentricity along building heights was replicated by Latin hypercube sampling. The fragilities for immediate occupancy and life safety were evaluated using 0.7% and 2.5% inter-story drift limits. Two limit-state probabilities and the corresponding earthquake intensities were compared. The effect of ignoring accidental torsion and the use of code accidental eccentricity were also assessed. The results show that accidental torsion may influence differently the structural reliability and limit-state PGAs. In terms of structural reliability, significant differences in the probability of failure are obtained depending on whether accidental torsion is considered or not. In terms of limit-state PGAs, accidental torsion does not have a significant effect. In detail, ignoring accidental torsion leads to underestimates in low-rise buildings and at small drift limits. On the other hand, the use of code accidental eccentricity gives conservative estimates, especially in high-rise buildings at small drift limits.

Prediction of shear strength and drift capacity of corroded reinforced concrete structural shear walls

  • Yang, Zhihong;Li, Bing
    • Structural Engineering and Mechanics
    • /
    • v.83 no.2
    • /
    • pp.245-257
    • /
    • 2022
  • As the main lateral load resisting system in high-rise reinforced concrete structures, the mechanical performance of shear wall has a significant impact on the structure, especially for high-rise buildings. Steel corrosion has been recognized as an important factor affecting the mechanical performance and durability of the reinforced concrete structures. To investigate the effect on the seismic behaviour of corroded reinforced concrete shear wall induced by corrosion, analytical investigations and simulations were done to observe the effect of corrosion on the ultimate seismic capacity and drift capacity of shear walls. To ensure the accuracy of the simulation software, several validations were made using both non-corroded and corroded reinforced concrete shear walls based on some test results in previous literature. Thereafter, a parametric study, including 200 FE models, was done to study the influence of some critical parameters on corroded structural shear walls with boundary element. These parameters include corrosion levels, axial force ratio, aspect ratio, and concrete compressive strength. The results obtained would then be used to propose equations to predict the seismic resistance and drift capacity of shear walls with various corrosion levels.

Seismic response of current RC buildings in Kathmandu Valley

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.791-818
    • /
    • 2015
  • RC buildings constitute the prevailing type of construction in earthquake-prone region like Kathmandu Valley. Most of these building constructions were based on conventional methods. In this context, the present paper studied the seismic behaviour of existing RC buildings in Kathmandu Valley. For this, four representative building structures with different design and construction, namely a building: (a) representing the non-engineered construction (RC1 and RC2) and (b) engineered construction (RC3 and RC4) has been selected for analysis. The dynamic properties of the case study building models are analyzed and the corresponding interaction with seismic action is studied by means of non-linear analyses. The structural response measures such as capacity curve, inter-storey drift and the effect of geometric non-linearities are evaluated for the two orthogonal directions. The effect of plan and vertical irregularity on the performance of the structures was studied by comparing the results of two engineered buildings. This was achieved through non-linear dynamic analysis with a synthetic earthquake subjected to X, Y and $45^{\circ}$ loading directions. The nature of the capacity curve represents the strong impact of the P-delta effect, leading to a reduction of the global lateral stiffness and reducing the strength of the structure. The non-engineered structures experience inter-storey drift demands higher than the engineered building models. Moreover, these buildings have very low lateral resistant, lesser the stiffness and limited ductility. Finally, a seismic safety assessment is performed based on the proposed drift limits. Result indicates that most of the existing buildings in Nepal exhibit inadequate seismic performance.