• Title/Summary/Keyword: drench

Search Result 58, Processing Time 0.025 seconds

Field Control of Phytophthora Blight of Pepper Plants with Antagonistic Rhizobacteria and DL-$\beta$-Amino-n-Butyric Acid

  • Lee, Jung-Yeop;Kim, Beom-Seok;Lim, Song-Won;Lee, Byung-Kook;Kim, Choong-Hoe;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.217-222
    • /
    • 1999
  • Treatment with antagonistic rhizobactera Burkholderia cepacia strain N9523 or an inducer of resistance DL-$\beta$-amino-n-butyric acid (BABA) effectively inhibited Phytophthora capsici infection on pepper plants in artificially infested pots. Treatment with BABA alone at $1,000\mu\textrm{g}$/ml or together with B. cepacia in combination induced a strong protection from the Phytophthora disease in the greenhouse. In artificially infested field, protection of pepper plants against the Phytophthora epidemic by BABA treatment was maintained at a considerable level. In contrast, soil drench with the antagonist B. cepacia alone, or in combination with BABA did not suppress the Phytophthora epidemic in the field. Mortality of pepper plants caused by P. capsici infection was significantly reduced by treatment with the antagonist Pseudomonas aeruginosa strain 950923-29 and BABA (12-29% plants diseased) relative to the untreated control (41-91% plants diseased) in the naturally infested field. Treatment with the antagonist Ps. aeruginosa strain 950923-29 and BABA also resulted in high levels of protection against Phytophthora blight in pepper plants. In the plastic filmhouse test, the average percentage of plants diseased was significantly low relative to the naturally infested field. Treatment with the antagonist Ps. aeruginosa strain 950923-29 and BABA in combination was most effective in suppressing the Phytophthora disease in field and plastic filmhouse.

  • PDF

Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34

  • Lee, Byung Dae;Dutta, Swarnalee;Ryu, Hojin;Yoo, Sung-Je;Suh, Dong-Sang;Park, Kyungseok
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.213-220
    • /
    • 2015
  • Background: Korean ginseng (Panax ginseng Meyer) is a perennial herb prone to various root diseases, with Phytophthora cactorum being considered one of the most dreaded pathogens. P. cactorum causes foliar blight and root rot. Although chemical pesticides are available for disease control, attention has been shifted to viable, eco-friendly, and cost-effective biological means such as plant growth-promoting rhizobacteria (PGPR) for control of diseases. Methods: Native Bacillus amyloliquefaciens strain HK34 was isolated from wild ginseng and assessed as a biological control agent for ginseng. Leaves from plants treated with HK34 were analyzed for induced systemic resistance (ISR) against P. cactorum in square plate assay. Treated plants were verified for differential expression of defense-related marker genes using quantitative reverse transcription polymerase chain reaction. Results: A total of 78 native rhizosphere bacilli from wild P. ginseng were isolated. One of the root-associated bacteria identified as B. amyloliquefaciens strain HK34 effectively induced resistance against P. cactorum when applied as soil drench once (99.1% disease control) and as a priming treatment two times in the early stages (83.9% disease control). A similar result was observed in the leaf samples of plants under field conditions, where the percentage of disease control was 85.6%. Significant upregulation of the genes PgPR10, PgPR5, and PgCAT in the leaves of plants treated with HK34 was observed against P. cactorum compared with untreated controls and only pathogen-treated plants. Conclusion: The results of this study indicate HK34 as a potential biocontrol agent eliciting ISR in ginseng against P. cactorum.

Effect of Growth Retardant BX-112 on Growth, Floral Initiation, and Endogenous GA Levels in Sorghum

  • Lee, In-Jung;Kim, Kil-Ung;Page W. Morgan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.2
    • /
    • pp.71-76
    • /
    • 1998
  • To define the relations between endogenous GA levels and growth and flowering in short-day plant sorghum, growth retardant BX-112 was applied to two sorghum genotypes, wild-type and phytochrome B mutant (phyB-1), which grows faster and flowers earlier than the wild-type. BX-112 and $GA_3$ were applied as a soil drench, and plant height, culm length, and date to floral initiation were investigated. Endogenous GAs contents were measured with GC-MS-SIM. BX-112 treatments inhibited shoot growth in both genotypes and drastically reduced $GA_1$ and $GA_8$ levels. With increasing BX-112 concentrations, $GA_1$ concentrations declined linearly, but caused the accumulation of intermediates from $GA_12$ to $GA_20$. This result implies that $GA_1$ is the major active endogenous GA in shoot elongation in a short day plant sorghum. The inhibition of plant growth in both of wild type and phyB-1 by BX-112 was very similar, while BX-112 effects on floral initiation in two types of plants differed significantly. Floral initiation of phyB-1 was not affected by BX-1l2, but that of wild-type was delayed as BX-1l2 concentration increased. Because BX-112 treatment causes accumulation of biosynthetic intermediates between synthetic pathway from $GA_12$ to $GA_20$ and because phyB-1 is altered in GA metabolism in this same region of the early C13-hydroxylation pathway, BX-112 may fail to block flowering of phyB-1.

  • PDF

Biological control efficacy on Sclerotinia rot(Sclerotinia sclerotiorum) by the use of antifungal agent some Bacillus sp.

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Shin, Dong-Beom;Hyun, Jong-Nae;Kang, Hang-Won;Park, Sung-Tae
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.106-107
    • /
    • 2003
  • The effect of biological control agent Bacillus sp. (BAC03-3-1, BAC03-3-2, BAC02-4) on pre- and postemergence Sclerotinia rot of perilla (Perilla frutescens var. japonica) caused by Sclerotinia sclerotiorum was determined from greenhouse field trials. The ability of this antagonist to reduce germination of sclerotia of S. sclerotiorum was also evaluated. In the greenhouse, suspension of BAC03-3-1 application as root drench of perilla, which provided as little as 10$\^$7/ cells/ $m\ell$ per gram of soil, significantly increased plant stand in pathogen-infested soil over that in the untreated control. All three isolates reduced the germination of sclerotia of S. sclerotiorum in loamy sand soils in the greenhouse. In loamy sand amended with rice bran the sclerotial germination was inversely correlated (r = -0.79) with perilla stand in the greenhouse. However, a higher rate of bacterial suspension with rice bran(Ig dwt./100g soil) than that applied with bacterial suspensions only was necessary to achieve a comparable reduction in sclerotial germination. In field study, all three isolates added to soil to provide 10$\^$7/ cells/$m\ell$ per gram significantly prevented Sclerotinia rot (73-85%) after 35 days of growth. The isolate BAC02-4, BAC03-3-1 and BAC03-3-2 gave final stands of 65 to 75, 60 to 70, and 55 to 60%, respectively. The addition of rice bran(1 %) to loamy sand in the field resulted in a 10-fold increase in propagule numbers of the three isolates within 10 days of application.

  • PDF

Evaluation of induced systemic resistance agent, Bacillus subtilis strain BAC02-4 against Magnaporthe grisea in rice in field

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Han, Seong-Sook;Jung, Won-Kwon;Park, Jo-Im;Park, Sung-Tae;Kim, Soon-Chul
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.105.3-106
    • /
    • 2003
  • Bacillus subtilis strain BAC02-4 was tested for its ability induced systemic resistance(ISR) in rice against Magnaporthe grisea We extend these studies to investigate the biological induction of systemic resistance in rice following treatment with the inducer isolate BAC02-4 and naturally infested with Pyricularia oryzae. We also determine levels of ISR activity during the period between disease development and the onset of systemic resistance. Comparition of lesion number according to applied concentration of BAC02-4 to 'Nagdongbyeo' when naturally infested with the conidia of P. grisea. Results from the blast nusery trial using the 'Nagdongbyeo' showed very low rice blast severity with the inducer concentration of 10$\^$8/ cfu level. Considering the low level of treatment and untreated control were observed to have developed typical susceptible lesion type. Highest protection against the rice blast pathogen when applied three times with 5 days interval as root drench at 5 to 6 leaf stage before pathogen challenge. But higher dose of bacterial inducer produced a little stunted plants with less number lesions and delayed disease development. Diseased leaf area of treated with suspension of the isolate which gave about 80% of control efficacy at 20 days later comparable to that in noninfested, inducer-free soil.

  • PDF

Influence of Commercial Antibiotics on Biocontrol of Soft Rot and Plant Growth Promotion in Chinese Cabbages by Bacillus vallismortis EXTN-1 and BS07M

  • Sang, Mee Kyung;Dutta, Swarnalee;Park, Kyungseok
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2015
  • We investigated influence of three commercial antibiotics viz., oxolinic acid, streptomycin, and validamycin A, on biocontrol and plant growth promoting activities of Bacillus vallismortis EXTN-1 and BS07M in Chinese cabbage. Plants were pre-drenched with these strains followed by antibiotics application at recommended and ten-fold diluted concentration to test the effect on biocontrol ability against soft rot caused by Pectobacterium carotovorum SCC1. The viability of the two biocontrol strains and bacterial pathogen SCC1 was significantly reduced by oxolinic acid and streptomycin in vitro assay, but not by validamycin A. In plant trials, strains EXTN-1 and BS07M controlled soft rot in Chinese cabbage, and there was a significant difference in disease severity when the antibiotics were applied to the plants drenched with the two biocontrol agents. Additional foliar applications of oxolinic acid and streptomycin reduced the disease irrespective of pre-drench treatment of the PGPRs. However, when the plants were pre-drenched with EXTN-1 followed by spray of validamycin A at recommended concentration, soft rot significantly reduced compared to untreated control. Similarly, strains EXTN-1 and BS07M significantly enhanced plant growth, but it did not show synergistic effect with additional spray of antibiotics. Populations of the EXTN-1 or BS07M in the rhizosphere of plants sprayed with antibiotics were significantly affected as compared to control. Taken together, our results suggest that the three antibiotics used for soft rot control in Chinese cabbage could affect bacterial mediated biocontrol and plant growth promoting activities. Therefore, combined treatment of the PGPRs and the commercial antibiotics should be carefully applied to sustain environmental friendly disease management.

Effects of Plant Growth Regulators on Seed Germination and Seedling Growth of Mountain Mulberry Seeds (Morus bombycis Koidz) (식물생장조절물질이 산뽕나무 종자의 발아 및 유묘생장에 미치는 영향)

  • Song, Min-Jeong;Kim, Kyung-Hoon;Hur, Young-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.101-109
    • /
    • 2016
  • This is the fundamental research on restoring damaged vegetation areas in the vicinity of DMZ using local native plant species. This research is aimed at identifying effective plant growth regulators (PGR) for seed germination and seedling growth of mountain mulberry, and developing effective methods for managing its germination and growth. Mountain mulberry seeds were collected from the regions in the DMZ vicinity, and tests with seven treatments using four PGRs including $GA_3$, kinetin, ABA and NAA, were conducted. The germination rate was calculated in two different ways of both in a growth chamber and in a greenhouse after seven days observation, and the growth characters such as leaf width/length, seedling width/length and fresh/dry weight, have been surveyed in a greenhouse for three months. Although in the growth chamber the highest germination rate was shown at a group with the kinetin treatment, it was not significantly different to that of the control group. Groups with ABA or NAA presented relatively low germination rates. As for the greenhouse test, the germination rates of all groups ranged 20~30% without significant difference each other, the reason of which might be due to low absorption by the effect of a soil drench method used in this study. The entire growth characters with the treatments of $2.15mg{\cdot}L^{-1}$ of kinetin and $10mg{\cdot}L^{-1}$ of $GA_3$ were significantly different to the control. NAA treatment only showed better growth of seedling width compared to the control. Consequently, the most effective PGRs for the germination and growth of mountain mulberry near the DMZ was kinetin. Further research on examining the most effective concentration of them was needed.

Efficacy of Uniconazole as a Phytoprotectant Against $SO_2$ Injury in Snap Bean (강남콩에 대한 $SO_2$ 피해경감제로서 uniconazole의 효과에 관한 연구)

  • ;Donald T. Krizek;Roman M. Mirecki;Edward H. Lee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.13-19
    • /
    • 1992
  • This study was conducted to determine the efficacy of using uniconazole,[(E)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazole-1-yl)-1-penten-3-ol)] as a phytoprotectant against $SO_2$ injury in snap been (Phaseolus vulgaris L. 'Strike'). Thirteen days prior to $SO_2$ fumigation, plants were given a 100 ml soil drench of uniconazole solution at concentrations of 0.02, 0.10, 0.25 and 0.50 mg/pot. All four uniconazole concentrations were significantly effective in providing protection against $SO_2$ exposure(3 h at 1.5 ppm), but uniconazole treatment above 0.02 mg/pot severely reduced stem elongation, leaf enlargement, flowering date and pod number and weight. Uniconazole treatment had little or no effect on stomatal conductance but reduced transpiration rate on a whole plant basis by nearly 40%. This may reflect an alteration in canopy structure by reducing stem elongation and leaf enlargement. Although uniconazole did not increase the activities of superoxide dismutase(SOD) and peroxidase(POD) in non-$SO_2$-fumigated plants, it significantly increased those enzyme activities in $SO_2$-fumigated plants. Chlorophyll concentration on the basis of unit area was increased 50-60% by uniconazole. However, the difference was not detected on the basis of dry weight. $SO_2$ increased variable chlorophyll fluorescence (Fv) 48% after 1.5 h of exposure in non-uniconazole treated plants but decreased Fv in the plants after 3 h of exposure. By appliing uniconazole, it was possible to maintain high Fv values in the latter group of plants. These results suggest that the phytoprotective effects of uniconazole are related to its growth-retarding properties as an anti-gibberellin as well as the increase of activites of free radical scavengers such as SOD and POD.

  • PDF

Antagonistic Effect of Lactobacillus sp. Strain KLF01 Against Plant Pathogenic Bacteria Ralstonia solanacearum (세균성 시들음병에 대한 식물성 유산균(Lactobacillus sp.)의 저해효과)

  • Shrestha, Anupama;Choi, Kyu-Up;Lim, Chun-Keun;Hur, Jang-Hyun;Cho, Sae-Youll
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • An antagonistic bacterial strain KLF01 was isolated from rhizosphere of tomato and identified to be Lactobacillus sp. by biochemical and genetic analysis. This strain showed antagonism against the used plant pathogenic bacteria like Ralstonia solanacearum, (bacterial wilt), Xanthomonas axonopodis pv. citri, (Citrus canker), Xanthomonas campestris pv. vesicatoria (Bacterial spot), Eriwinia pyrifoliae (Shoot-blight) and Eriwinia carotovora subsp. carotovora group (Potato scab) through agar well diffusion method. In planta test done by drench application of strain KLF01 $(4{\times}10^8 cfu/ml)$ into the experimental plot containing tomato (Solanum lycopersicum L.) cultivar 'Lokkusanmaru' and red pepper (Capsicum annuum L.) cultivar 'Buja' plants, in pot test post-inoculated with the plant pathogenic bacteria, R. solanacearum significantly reduced the disease severity, compared to the non-treated plants.

Effect of Paclobutrazol on Growth, and High Temperature and Drought Stress in Perennial Ryegrass (Paclobutrazol 처리가 Perennial Ryegrass의 생육 및 고온과 건조 Stress에 미치는 영향)

  • 김태일;구자형;원동찬
    • Asian Journal of Turfgrass Science
    • /
    • v.3 no.1
    • /
    • pp.24-33
    • /
    • 1989
  • This study was conducted to investigate the effect of paclobutrazol [(2 RS , 3 RS )1-(4- chlor-ophenyl )-4, 4- dimethyl -2- (1, 2, 4- triazol -1- yl )- pentan -3-01] on the tolerance of hi-gh temperature and drought stress as related to growth retardation , iranspiration rate , soil water content , nitrogen level and photosynthetic rate in perennial ryegrass ( Loliurn perenne L . ' Omega H , ). Plants were given a 30 ml soil drench of paclohutrazol at the concentrations of 0, 0.01, 0.1, 1.0, 10.. 0, mg / 6 .5cm- diameter pot . The rcsults were as follows : 1. Increasing concentrations of paclohutrazul reduced plant height , leaf area , fresh weight and dry weight , hut increased chlorophyll content per unit area . The number of tillers and leaf width were not affected hy the paclobutrazol concentrations . 2. The proper concentration of paclohatrazol on growth retardation in perennial ryegrass was about I mq /pot , hut leaf deformity and severe growth retardation were shown at high concentration of 10 mq / pot . 3. Perennial ryegrasses grown at 30˚C were shown significantly short plant height and low leaf nitrogen level compared with those grown at 20˚C. Increasing concentrations of paclohutrazol at 20˚C increased nitrogen level hut it could not increase nitrogen level at 30˚C . 4. During the drought stress , increasing temperatures significantly promoted transpiration rate and wilting time . It took about 5 days at 20˚C and 3 days at 30˚C to reach wilting time of leaves from water stress treatment . Soil water contents at wilting time of non-treated controls were averaged 6. 871% at 20˚C and 6. 17% at 30˚C 5. Paclohutrazol reduced transpiration rate at high temperature and drought stress . Wilting appeared at the lower water content of soil according to increasing concentrations of paclobutrazol at 30˚C hut there were no differences among concentrations of at 20˚C. 6.Paclohutrazol treatment at 1 rag /pot reduced injury rate of leaves from 67.1 % and 100 % in control plants to 15.7% and 80% at 20˚C and 3010, respectively. 7. Photosynthetic rate per unit area was significantly reduced at high temperature . Paclohutrazol stimulated photosynthetic rate with increase of concentrations at 20˚C but there was no increasing effect at 30˚C.

  • PDF