• Title/Summary/Keyword: dredged silt

Search Result 23, Processing Time 0.025 seconds

Performance characteristics of dredged silt and high-performance lightweight aggregate concrete

  • Wang, H.Y.;Sheen, Y.N.;Hung, M.F.
    • Computers and Concrete
    • /
    • v.7 no.1
    • /
    • pp.53-62
    • /
    • 2010
  • Dredged silt from reservoirs in southern Taiwan was sintered to make lightweight aggregates (LWA), which were then used to produce high-performance lightweight aggregate concrete (HPLWC). The HPLWC was manufactured using different amounts of mixing water (140, 150, and 160 $kg/m^3$) and LWA of different particle densities (700, 1100, and 1500 $kg/m^3$) at different W/b ratios (0.28, 0.32, and 0.4). Results show that the lightweight aggregates of dredged silt taken in southern Taiwan perform better than the general lightweight aggregates. In addition, the HPLWC possessed high workability with a slump of 230-270 mm, and a slump flow of 450-610 mm, high compressive strength of over 40 MPa after 28 days of curing, good strength efficiency of cement exceeding $0.1MPa/kg/m^3$, low thermal conductivity of 0.4-0.8 $kcal/mh^{\circ}C$, shrinkage of less than $4.8{\times}10^{-4}$, and high electrical resistivity of above 40 $k{\Omega}-cm$. The above findings prove that HPLWC made from dredged silt can help enhance durability of concrete and provide and an ecological alternative use of dredged silt.

Study on durability of densified high-performance lightweight aggregate concrete

  • Wang, H.Y.
    • Computers and Concrete
    • /
    • v.4 no.6
    • /
    • pp.499-510
    • /
    • 2007
  • The densified mixture design algorithm (DMDA) was employed to manufacture high-performance lightweight concrete (LWAC) using silt dredged from reservoirs in southern Taiwan. Dredged silt undergoing hydration and high-temperature sintering was made into a lightweight aggregate for concrete mixing. The workability and durability of the resulting concrete were examined. The LWAC made from dredged silt had high flowability, which implies good workability. Additionally, the LWAC also had good compressive strength and anti-corrosion properties, high surface electrical resistivity and ultrasonic pulse velocity as well as low chloride penetration, all of which are indicators of good durability.

A Survey of Floating Silt-Clay Thickness using Dual Frequency Echo Sounder (이중 주파수 에코사운더를 이용한 부니층 두께 조사)

  • Ha, Hee-Sang;Park, Hyeong-Keun;Kim, Yeon-Jun;Yang, In-Tae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.14-21
    • /
    • 2007
  • In general bathymetric surveying is the method which gets depth. The water depth on chart is generally measured by a 200Khz frequency echo-sounder. In this study the thickness of the floating silt-clay was measured by a duel frequency sounder using 33Khz and 200Khz. This study shows the method of measuring the volume of the floating silt-clay in dredged basins dredged basin. After this surveying RI test was performed for verifying the existence of the silt-clay.

  • PDF

Pozzolan Activity of Heat-treated Dredged Sea Soil (소성된 항만준설토의 포졸란 반응성 분석)

  • Moon, Hoon;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.43-44
    • /
    • 2016
  • Large amount of dredged sea soil is produced in southeast seashore region in during harbor maintenance. Disposal of dredged sea soil has become difficult due to the environmental regulation. Therefore, disposal of dredged sea soil method is to landfill. But, the capacity of the landfill limit state and if the size of the dredged sea soil is in the range of silt or clay, it cannot be used as reclamation material because ground subsidence occur. In this study, analyzed the pozzolanic activity of dredged sea soil. Analysis of the results showed a pozzolanic activity of dredged sea soil. In addition, incorporation of heat treated dredged sea soil increase both 28 and 56 day compressive strength of mortar specimen.

  • PDF

Reuse of dredged sediments as pavement materials by cement kiln dust and lime treatment

  • Yoobanpot, Naphol;Jamsawang, Pitthaya;Krairan, Krissakorn;Jongpradist, Pornkasem;Horpibulsuk, Suksun
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.1005-1016
    • /
    • 2018
  • This paper presents an investigation on the properties of two types of cement kiln dust (CKD)-stabilized dredged sediments, silt and clay with a comparison to hydrated lime stabilization. Unconfined compressive strength (UCS) and California bearing ratio (CBR) tests were conducted to examine the optimal stabilizer content and classify the type of highway material. A strength development model of treated dredged sediments was performed. The influences of various stabilizer types and sediment types on UCS were interpreted with the aid of microstructural observations, including X-ray diffraction and scanning electron microscopy analysis. The results of the tests revealed that 6% of lime by dry weight can be suggested as optimal content for the improvement of clay and silt as selected materials. For CKD-stabilized sediment as soil cement subbase material, the use of 8% CKD was suggested as optimal content for clay, whereas 6% CKD was recommended for silt; the overall CBR value agreed with the UCS test. The reaction products calcium silicate hydrate and ettringite are the controlling mechanisms for the mechanical performance of CKD-stabilized sediments, whereas calcium aluminate hydrate is the control for lime-stabilized sediments. These results will contribute to the use of CKD as a sustainable and novel stabilizer for lime in highway material applications.

Investigation of Reducing Characteristics for the Spreading of Dredging Soil and the Diffusion of Contaminant by Silt Protector Curtain through Three Dimensional Numerical Model Experiment (3차원 수치모형실험을 통한 오탁방지막의 오염물질 및 준설토 확산 저감특성 조사)

  • Hong, Nam-Seeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.78-85
    • /
    • 2010
  • This study investigates reducing characteristics for the spreading of dredged soil and the diffusion of contaminant by silt protector curtain through three dimensional numerical experiment. The numerical medel is modified by combining the sediment transport characteristics for cohesive sediment into the previously developed model. Several numerical experiments have been given in order to investigate the reducing effect of silt protector using two dimensional numerical channel model under various parameters such as upstream flow velocity, depth of silt curtain and the position of dumped materials. Through the evaluation of several simulation results, we knew that the careful design has to be given in the determination of depth and position of silt protector.

Effect of Liquefaction Resistence of Fine-Grained Soils on the Reclaimed Land (준설매립지반의 세립토가 액상화 강도에 미치는 영향)

  • Kim, Jong-Kook;Yoon, Won-Sub;Park, Sang-Jun;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1717-1726
    • /
    • 2008
  • Vibration triaxial compression test was put in influence for liquefaction strength of fine grained soil of dredged and reclaimed ground and consideration for fine fraction content, relative density, overconsolidation ratio and plasticity index in this study. By the results of these test, the liquefaction strength increased with fine fraction content and the relative density, overconsolidation ratio incresed with liquefaction strength too. However, in the case of nonplastic silt was the smalist liquefaction strength which influenced by dilatancy and interlocking when silt content was 34.7%(average grading 0.12mm). Therefore, liquefaction strength of fine grained soil of dredged and reclaimed ground increased with fine fraction content so it will help to make lower liquefaction.

  • PDF

A Study on the Particle Separation Technology of Contaminated Dredged Sediments (오염 준설퇴적토의 입자분리기술에 관한 연구)

  • Park, Jeong Jun;Hwnag, Soon Gab;Shin, Eun Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.87-94
    • /
    • 2013
  • As sediment contamination problems have recently been raised in Korea, the need for technologies to remove contaminants in sediments has increased. Contaminated sediments in Korea has been annually dredged and treated using processes of coagulation/flocculation, sedimentation on barges, dewatered and dried at prepared site, and then disposed at a landfill site, which is very costly, and only a limited landfill space available in Korea. Contaminants in media containing a high percentage of silt and clay sized particles, typically, are strongly adsorbed on the particles and difficult to remove. Particle separation processes that separate the fine clay and silt particles from the coarser sand and gravel and concentrate the contaminants into a smaller volume of sediment that can be further treated of disposed of, are very effective in the post step processes. In this study are to test the feasibility of treating dredged sediments using a hydrocyclone process, and to estimate design parameters for a pilot scale test. A hydrocyclone was operated to separate larger particles from the sediments. It was found that the particle separation was greatly affected by the solid contents and inlet pressure in the hydrocyclone.

A Study on the Mechanical Characteristic and Shear Strength haracteristic on Elapsed Time of the Western Sea Dredged Soils (서해안 준설토의 역학적 특성 및 시간경과에 따른 강도 특성에 관한 연구)

  • Kim, Hongtaek;Han, Yeonjin;Yu, Wandong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.31-41
    • /
    • 2013
  • The dredged soils of western sea of Korea have been used as the fill materials because it possess the characteristics that constitute silt, silty sand and sand mainly. However, a study on dredged soils as the fill materials is insufficient. Hence, in this present study, the application the dredged soils of western sea of Korea as the fill materials was confirmed. Primary, the composition characteristics of the ground was analyzed to confirm the application on dredged soils as the fill materials by the piezo-cone penetration test. In laboratory test, it was performed the self-weight consolidation test for mechanical characteristics of the dredged soils. The direct shear test using self-weight consolidation test sample for shear strength characteristics was performed after self-weight consolidation test. Additionally, the mechanical characteristics of the dredged soils on elapsed time using self-weight consolidation test sample, which is drained naturally, was evaluated. The dredged soils of western sea of Korea show that unit weight and shear strength is increased as natural drain time elapses.

A Fundamental Study for Beneficial Use of Dredged Material as a Concrete Admixture (항만준설토의 콘크리트 혼합재로의 활용을 위한 기초적 연구)

  • Oh, Hong-Seob;Oh, Kwang-Jin;Lee, Ju-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.132-141
    • /
    • 2010
  • Recently dredged material generation has a tendency to increase since harbor construction are under progress. In this study, an experiment had been carried out which replacement of dredged material of Busan and Ulsan port as concrete mixing material. For this experiment, physical and chemical test of dredged material was carried out, and compressive strength test of mortal specimen with dredged material in scale, as aggregate replacement, was carried out. Compressive strength of Busan and Ulsan was both increased when the ratio of mixing materials was 10%. Compressive strength of Dredged material from Busan with about 70% of mineral silt showed increse when the ratio of aggregate replacement in 30%. In addition, in the result of the ICP test, both dredged materials satisfied the waste's marine discharge treatment and soil contamination concern and measures criterion on that using dredged material as a concrete material can influence on application of concrete positively.