• 제목/요약/키워드: drawing strain

검색결과 220건 처리시간 0.02초

박판재의 스프링백 해석(II)-해석모델의 실험적 검증 (Analysis of Springback of Sheet Metal(II): Experimental Validation of Analytical Model)

  • 이재호;김동우;손성만;이문용;문영훈
    • 소성∙가공
    • /
    • 제16권7호
    • /
    • pp.516-520
    • /
    • 2007
  • As the springback of sheet metal during unloading nay cause deviation from a desired shape, accurate prediction of springback is essential for the design of sheet stamping operations. On the removal of the applied load the specimen loses its elastic strain by contracting around the contour of the block, the radius $\rho$ can be determined by the residual differential strain. Therefore in this study the springback estimated by the residual differential strain is experimentally validated through the comparison with those obtained by U-bending test. The springback characteristics of two analytical models are also estimated at various processing conditions such as thickness, curvature of radius and drawing strain. The model based on residual differential strain has an applied transition strain where the springback undergoes a dramatic decrease. Both models show that springback decreases with increased strip thickness and with decreased radius of curvature. For no applied tension, the model based on residual differential strain predicts more springback as compared to the moment based model.

차체판넬 프레스 성형공정의 평면변형해석 (Plane-Strain Analysis of the Stamping Process of Auto-Body Panel)

  • 전기찬;이항수;유동진;이정우;김충환
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1853-1860
    • /
    • 1992
  • 본 연구에서는 평면변형을 가정할 수 있는 부품을 대상으로 하여 성형에너지 최소화 기법을 사용하여 계산속도가 빠르고, 설계된 금형의 CAD 데이터로부터 직접 변 형해석이 가능하며 금형 설계자들이 용이하게 사용할 수 있는 2차원적인 해석을 연구 하였다.

알루미늄 합금 박판 스탬핑 공정의 단면 성형 해석 (Sectonal Forming Analysis of Stamping Processes of Aluminum Alloy Sheet Metals)

  • 이광병;이승열;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1996년도 추계학술대회논문집
    • /
    • pp.38-47
    • /
    • 1996
  • Sectional analysis program for plane strain or axisymmetric geometry of aluminum alloy sheet metals was developed. For modeling the anomalous behavior of aluminum alloy, Barlat's strain rate potential and Hill's 1990 non-quadratic yield theory arranged under the plane stress assumption were employed. 2-D rigid-viscoplastic FEM formulation based on the bending-augmented membrane theory was derived, solving simultaneously force equilibrium as well as non-penetration condition. Isotropic hardening law was also assumed for yielding behavior. To verify the validity and availability of the developed program, 2-D stretch/draw forming process for plane strain geometry and cylindrical cup deep drawing process for axisymmetric geometry were simulated.

  • PDF

스테인리스 와이어의 인발에 관한 연구 (A Study on the Wire Drawing of Stainless Steel)

  • 박강근;최원식
    • 한국공간구조학회논문집
    • /
    • 제7권1호
    • /
    • pp.71-78
    • /
    • 2007
  • 본 논문은 인발공정에 의해서 만들어지는 스테인리스 강선의 제작 시에 필요한 인발기술에 관한 연구이다. 스테인레스 강선재는 표면이 아름답고, 표면가공을 다양하게 할 수 있으며 내식성 및 내마멸성이 우수할 뿐만 아니라 강도가 크고 가공선이 뛰어나고, 내화 내열성이 우수하여 건축물에도 많이 사용되는 볼트, 너트, 스크루우, 용접건, 와이어 로우프 등에 많이 사용된다. 대공간 연성 건축물에 특히 많이 사용되는 스테인리스 와이어의 제작 시에 최적의 다이스 설계 기준간을 찾아서 현장 적용이 용이 하도록 하였다. 스테인리스 와이어의 인발 생산 과정의 역학적 개념을 이해함으로서 와이어 로우프의 물리적 성질을 파악할 수 있다고 사료된다.

  • PDF

온간 딮 드로잉에서 이종금속판재(STS430-Al3004-AZ31)의 파단 및 두께 예측을 위한 연구 (Prediction for Thickness and Fracture of Stainless Steel-Aluminum-Magnesium Multilayered Sheet during Warm Deep Drawing)

  • 이영선;이광석;김대용
    • 소성∙가공
    • /
    • 제21권1호
    • /
    • pp.49-57
    • /
    • 2012
  • It is difficult to estimate the properties of multilayered sheet because they are composed of one or more different materials. Plastic deformation behavior of the multilayered sheet is quite different as compared to each material individually. The deformation behavior of multilayered sheet should be investigated in order to prevent forming defects and to predict the properties of the formed part. In this study, the mechanical properties and formability of stainless steel-aluminum-magnesium multilayered sheet were investigated. The multilayered sheet needs to be deformed at an elevated temperature because of its poor formability at room temperature. Uniaxial tensile tests were performed at various temperatures and strain rates. Fracture patterns changed mainly at a temperature of $200^{\circ}C$. Uniform and total elongation of multilayered sheet increased to values greater than those of each material when deformed at $250^{\circ}C$. The limiting drawing ratio (LDR) was obtained using a circular cup deep drawing test to measure the formability of the multilayered sheet. A maximum value for the LDR of about 2 was achieved at $250^{\circ}C$, which is the appropriate forming temperature for the Mg alloy. Fracture patterns on a circular cup and thickness of formed part were predicted by a rigid-viscoplastic FEM analysis. Two kinds of modeling techniques were used to simulate deep drawing process of multilayered sheet. A single-layer FE-model, which combines the three different layers into a macroscopic single layer, predicted well the thickness distribution of the drawn cup. In contrast, the location and the time of fracture were estimated better with a multi-layer FE model, which used different material properties for each of the three layers.

열재현에 의한 SS300 및 STS304의 기계적 성질 및 초음파 특성 (Mechanical Properties and Ultrasonic Characteristic of SS400 and STS304 by Simulated Heats)

  • 정정환;안석환;박인덕;남기우
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.127-132
    • /
    • 2003
  • In a today industry, the welding is doing a many portion in structure manufacture. This study is simulated heat of heat-effected zone and researched a mechanical properties and ultrasonic characteristic in used the SS400 and the STS304. As the result mechanical properties of steel that become drawing decreased because of remaining stress by strain gardening according as simulated heat temperature rises, but according as temperature rises in material that do simulated heat after have done annealing, mechanical propensity was improved. The velocity and attenuation become different by effect of remaining stress than effect of material internal microstructure in ultrasonic wave test. In the case of STS304, there was change in mechanical properties by effect that is by strain hardening, but there was no change in material that simulated heat after annealing. When become drawing in ultrasonic waves test, according as simulated heat temperatures rise, change of attenuation coefficient is looked, but material that simulated heat after annealing was no change almost both the volocity and attenuation.

  • PDF

신선가공 고탄소 강선에서의 시효현상과 딜라미네이션 발생간의 상관관계 고찰 (The ]Relationship between Strain Ageing And Delamination Occurrence of Drawn Steel Wires)

  • 이중원;이종철;강의구;이용신;박경태;남원종
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.231-234
    • /
    • 2009
  • The effects of annealing temperature and time on mechanical properties and microstructures were already investigated in cold drawn pearlitic steel wires. During annealing, the increment of the tensile strength at low temperatures found to be due to age hardening, while the decrease in the tensile strength at high temperatures was attributed to age softening, involving the spheroidization of lamellar cementite and recovery of lamellar ferrite. Since Between increase of tensile strength and the occurrence of the delamination would be closely related to the dissolution of cementite, the increase of drawing strain by lower annealing temperature caused the between higher tensile strength and the easier occurrence of the delamination in cold drawn pearlitic steel wires.

  • PDF

전력절감기함의 설계 및 구조해석 (Design and Structural Analysis of Electric Saver Box)

  • 이종선
    • 한국산학기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.2435-2440
    • /
    • 2012
  • 본 논문은 기존의 전력절감기(Electric Saver)와 성능과 형상이 다른 전력절감기를 제작하기 위하여 SolidWorks를 활용하여 전력절감기함의 기초설계를 실시하였다. 기초설계를 바탕으로 전력절감기함에 하중이 집중되는 부분을 고려하여 해석하였으며 외함의 내구성을 보장하기 위하여 3차원 유한요소해석 코드인 ANSYS를 이용하여 응력(stress), 변형률(strain), 변형량(deformation)을 구하였으며 이를 제작에 사용된 상세설계에 반영하였다.

임의의 성형조건을 갖는 박판의 평면변형율 해석 (Plane Strain Analysis of Sheet Metal with Arbitrary Forming Conditions)

  • 금영탁;이승열
    • 소성∙가공
    • /
    • 제1권1호
    • /
    • pp.95-103
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation with an arbitrarily-shaped tool profile is introduced. An implicit, incremental, updated Lagrangian formulation with a rigid-viscoplastic constitutive equation is employed. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The linear line elements are used for depicting the formed sheet, based on membrane approximation. The FEM formulation is tested in the sections of automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains is obtained in the stretched section, but also the numerical stability of formulation is verified in the draw-in section.

  • PDF