• 제목/요약/키워드: drawing die

검색결과 378건 처리시간 0.025초

터빈 블레이드의 형단조 금형설계 시스템 개발 (Development of Die Design System for Turbine Blade Forging)

  • 조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.77-81
    • /
    • 1999
  • The predictions of metal flow forging load optimal die angle and preform size are not so easy in turbine blade forging. First of all the quality of final product is influenced by side force which is one of the significant factors. in this study slab method is applied to determine optimal die angle minimizing side force and the position of preform Finally drawing of die design is obtained in optimal die angle with developing tool that is composed of Visual Basic.

  • PDF

스프링형 블랭크홀더 시스템의 디프드로잉 가공에서 다이면 윤활효과에 관한 연구 (A study on the effect of die lubrication in deep drawing process with spring type blankholder system)

  • 이종국;강명순
    • 오토저널
    • /
    • 제11권3호
    • /
    • pp.49-59
    • /
    • 1989
  • The purpose of this paper is to obtain the effect of die lubrication in deep drawing process. The flange wrinkling is analysed by a moment equilibrium method in order to apply the optimum blankholding force to the blank. The experiment has been carried out with the high stiffness spring-type blankholder system. As the result, blankholding pressure is determined in terms of variables in deep drawing process. In the range of frictional coefficient which has been found in this experiment, there was a little difference in required blankholding force but a great difference in drawing force. It was found that the stiffness of blankholder was the major factor which influences on flange wrinkling in spring-type blankholder system.

  • PDF

칼라화상관 전극 프로그레시브금형의 자동설계시스템개발 (Development of an Automatic Design System of Progressive Die for making CPT grid)

  • 한규택
    • 한국생산제조학회지
    • /
    • 제7권4호
    • /
    • pp.14-20
    • /
    • 1998
  • This paper describes a computer-aided die design system of progressive die for making CPT grid. An approach to the development of the automatic design system is based on knowledge-based rules. The developed system is designed by considering several factors, such as grid geometry and punch profile. Grid, a key component of electronic gun, is formed through a sequence of many operations, among which the pilot piercing, beading, notching, bending, swaging and slotting etc. Using the developed system, design parameters are determined and output is generated in graphic forms. Therefore the developed system provides part drawing and the assembly drawing of die set.

가열냉각방법에 의한 마그네슘합금의 판재성형성 개선 (Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method)

  • 강대민
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.607-612
    • /
    • 2005
  • In this paper, warm deep drawing process with local heating and cooling technique was attempted to improve the formability of AZ31 magnesium alloy which is impossibly to form by conventional methods at room temperature by finite element method and experiment. For FE analysis, in first model with considering heat transfer, both die and blankholder were heated to 573K while the punch was kept at room temperature by cooling water. Also distribution of thickness and von Mises stress at room temperature and 498k for warm deep drawing were compared by FEM. Uniaxial tension tests at elevated temperature were done in order to obtain the temperature dependence of material constant under temperature of $293K\~573K$ and cross head velocity of $5\~500mm/min$. The phenomenological model for warm deep drawing process in this work was based on the hardening law and power law strain rate dependency. Deep drawing experiment were conducted at temperatures of room temperature, 373K, 423K, 473K, 498K, 523K, and 573K for the blank and deep drawing tools(holder and die) and at a punch speed of 10mm/min.

다양한 종횡비의 직사각바 다단 인발공정에서 치수정도 향상을 위한 프로세스 맵 (Process Map for Improving the Dimensional Accuracy in the Multi-Stage Drawing Process of Rectangular Bar with Various Aspect Ratio)

  • 고필성;김정훈;김병민
    • 소성∙가공
    • /
    • 제27권3호
    • /
    • pp.154-159
    • /
    • 2018
  • In the rectangular bar multi-stage drawing process, the cross-section dimensional accuracy of the rectangular bar varies depending on the aspect ratio and process conditions. It is very important to predict the dimensional error of the cross-section occurring in the multi-stage drawing process according to the aspect ratio of the rectangular bar and the half die angle of each pass. In this study, a process map for improving the dimensional accuracy according to the aspect ratio was derived in the drawing process of a rectangular bar. FE-simulation of the multi-stage shape drawing process was carried out with four types of rectangular bar. The results of the FE-simulation were trained to the nonlinear relationship between the shape parameters using an Artificial Neural Network (ANN), and the process maps were derived from them. The optimum half die angles were determined from the process maps on the dimensional accuracy. The validity of the suggested process map for aspect ratios 1.25~2:1 were verified through FE-simulation and experimentation.

AZ31 마그네슘 판재의 더블 싱크형 딥드로잉 공정의 성형성에 관한 실험적 연구 (Experimental Study on the Formability of Simultaneous Deep Drawing of Circular and Rectangular Cups with AZ31 Magnesium Alloy)

  • 권기태;강석봉;강충길
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.586-593
    • /
    • 2008
  • In warm press forming of magnesium alloy sheet, it is important to control the sheet temperature by heating the sheet in closed die. When forming a commercial AZ31 magnesium alloy sheets which are 0.5mm and 1.0mm thick, respectively, time arriving at target temperature and temperature variation in magnesium alloy sheet have been investigated. The deep drawing process with rectangular shape alone at the first stage and with both circular and rectangular shapes at the second stage was employed. At the first stage, through deep drawing process with rectangular shape alone according to various forming temperature($150{\sim}350^{\circ}C$) and velocity($0.1{\sim}1.0mm/s$), optimum forming condition was obtained. At the second stage, deep drawing process with the circular and rectangular shapes were performed following deep drawn square cups with Limited Drawing Height(LDH) obtained at the first stage. Here, clearance which is defined a gap between the die and the punch including sheet was set to ratio of 20, 40 and 100% to thickness in sheet. Accordingly, temperature, velocities, and clearances suitable for forming were suggested through investigating the thickness variation of the product.

Test Work 드로잉 금형의 설계 및 제작에 관한 연구 (A study on the design and manufacture of test work drawing die)

  • 이춘규;최계광
    • Design & Manufacturing
    • /
    • 제12권1호
    • /
    • pp.13-17
    • /
    • 2018
  • It was analyzed and experimented on the change of the material thickness according to the size of the "R" of the punch and die corners using the material of SCP-1 0.25mm As a result, the following conclusions were obtained. Tensile strength analysis and safety analysis of materials are very important process for each process in strip layout, and Through this, the Influx of material and the deformation of the material were found. As a result of safety analysis and tensile thickness analysis, when the corner R of the punch was 0.3 mm and the edge R of the die was 1.0 mm The inflow of the material was not smooth, and the thickness of the corner part became 0.2 mm, causing cracks. when the corner R of the punch was 0.5 mm and the edge R of the die was 1.5 mm The inflow of the material was smooth, The thickness of the corners of the product is 0.21mm and It was considered that cracks do not occur when the thickness of the bottom surface and the body part becomes thin. The results obtained by applying the results obtained from the analysis, In Experimental Condition 1, a crack occurred in the same part of the analysis In Experimental Condition 2, the flow of the material was smooth and the drawing processing could be performed without generating cracks.

축대칭 박판 하우징의 디프드로잉 성형에 대한 유한요소법해석 및 파단 원인 분석 (Finite Element Analysis of Deep Drawing for Axisymmetric Sheet Metal Housing)

  • 윤정호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 박판성형기술의 진보
    • /
    • pp.191-198
    • /
    • 1994
  • A practical example of the axisymmetric deep drawing process is simulated by the elastic-plastic finite element analysis using updated Lagrangian approach considering the large deformation. An approach is suggested to solve the problem of the ductile fracture that may encounter during the deep drawing process. The result can be applied to the design of the die for the axisymmetric deep drawing.