• Title/Summary/Keyword: drawing coefficient

Search Result 86, Processing Time 0.021 seconds

Study on the Friction Characteristics of Various Panels in Circular Drawbead Forming of Cold Rolled Steels for Automotive Parts (자동차용 냉간압연재의 원형 드로우비드 성형시 강판 재질별 마찰특성에 관한 연구)

  • Kim D. H.;Lee D. H.;Kim W. T.;Moon Y H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.83-90
    • /
    • 2004
  • The drawbead is one of the most important factors in sheet metal forming for automotive parts. So clarifying the friction characteristics between sheets and drawbead is essential to improve the formability of sheet metal. Therefore in this study, drawbead friction test was performed at various panels(cold rolled steel sheets, galvanized steel sheets, electrogalvanized coating steel sheets, electrogalvanized Zn-Fe alloy steel sheets and aluminum alloy steel sheets). Circular shape bead has been used for the test. The results show that friction and drawing characteristics were mainly influenced by the nature of zinc coating.

  • PDF

Effects of Cryogenic Temperature on Wear Behavior of 22MnB5 Under Cold Stamping (극저온이 22MnB5강의 냉간 스탬핑 마모에 미치는 영향)

  • Ji, Min-Ki;Noh, Yeonju;Kang, Hyun-Hak;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.241-246
    • /
    • 2022
  • This paper presents the effects of cryogenic temperature on the wear behavior of 22MnB5 blank under cold stamping. After immersing the blank in liquid nitrogen (LN2) for 10 min, a strip drawing test was performed within 10 s. The hardness was measured using the Rockwell hardness test, which increased from 165 HV at 20℃ to 192 HV at cryogenic temperature. The strip drawing test with 22MnB5 blank and SKD61 tool steel shows that for the different wear mechanisms on the tool surface with respect to temperature; adhesive wear is dominant at 20℃, but abrasive wear is the main mechanism at cryogenic temperature. As the friction test is repeated, sticking gradually increases on the tool surface at 20℃, whereas the scratch increases at cryogenic temperature. For the friction behavior, the friction coefficient rapidly increases when adhesive wear occurs, and it occurs more frequently at 20℃. The results for nanoindentation near the worn blank surface indicate a difference of 1.3 GPa at 20℃ and 0.8 GPa at cryogenic temperature compared to the existing hardness, indicating increased deformation by friction at 20℃. This occurs because thermally activated energy available to move the dislocation decreases with decreasing temperature.

A Method to Evaluate Rate of 'Soft-Hard' In a Drawing (그림의 '부드러운-딱딱한' 정도의 평가 방법)

  • Yoon, Seok-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3963-3970
    • /
    • 2009
  • This study proposes a method to evaluate the level of 'soft-hard' of color quantitatively by evaluating the shape with edge sharpness automatically and by evaluating color in the color image scale in a drawing in art therapy using a computer. The dependent variable is the rank for the color experts to rate the level of 'soft-hard'. The mean and standard deviation of Value(V), and Chroma(C), colors, main color, clusters, length of edge, and sharp line rate of edge are considered as the independent variable. The appropriate independent variables to explain the dependent variable are selected through the step wise regression analysis. The inter-rater reliability of two raters is checked and the validity of developed system is verified by the rank correlations coefficient between the ranks of rater's and system's. This system can be used to evaluate of the shape or color in a drawing objectively and quantitatively for art therapy assessment, and to give the useful information to the fashion, textile, interior industry as well as color psychology and art therapy.

Investigation on glass transition temperature of low density polyethylene by the characteristics of temperature dependent linear expansion (선팽창 온도특성에 의한 저밀도 폴리에틸렌의 유리 천이온도에 대한 고찰)

  • 김봉흡;강도열;김재환
    • 전기의세계
    • /
    • v.30 no.7
    • /
    • pp.441-447
    • /
    • 1981
  • As a preceeding work for the study on dielectric characterstics of a kind of low density polyethylene introduced morphological change by mechanical method, glass transition temperature which is regarded as a macroscopic aspect for relaxation of molecular chain segments has been observed by means of temperature dependent dilatometric measurement. The origina specimen clearly shows two knees which correspond to two peaks (.gamma. and .betha. peak) in the intenal friction measurement, suggesting the existence of separated glass transition temperatures at 150.deg.k and 260.deg.k respectively. On the specimen irradiated to 100 Mrad both glass transition temperatures tend to shift towards high temperature sides because of crosslinking by irradiation. furthemore an evidence can be seen that radiation effect, even in amorphous phase, is also slelctive depending on slight morphological differences. The specimen extended to four times in length shows a peculiar nature such as negative linear thermal expansion coefficient increasing with temperature between 220.deg.k and ambient temperature and that this fact is interpreted by considering that c axis of the lattice aligns along the extended direction by drawing, further c axis inherently possesses the characteristics of negative linear thermal expansion coefficient. For the observations that the relatively small positive linear expansion on the specimen extended to ca. two times as well as the part below 220.deg.k of the specimen extended to four times, it is considered for the reason of the facts that the incompletely oriented region indicated as the middle part of Peterlin's model tends to restore partially to orginal arrangement-a kind of phase transition-as increasing with temperature.

  • PDF

Frictional characteristics of electro Zn-Ni alloy coated steel sheets (Zn-Ni계 합금도금강판의 마찰특성에 관한 연구)

  • 김영석;박기철;조재억
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1807-1818
    • /
    • 1991
  • The frictional characteristic of Zn-Ni electrogalvanized steel sheet was investigated by experimental procedures. To clarify the effect of surface property on the frictional characteristic of Zn-Ni coated steel sheet, Micro-hardness test, SEM analysis and X-ray diffraction analysis were carried out. Coefficients of friction for various stamping lubricant and Ni content in coated layer were measured by a draw bead friction test. The results show that frictional characteristic is very sensitive to Ni content of coated layer and depends on stamping lubricant. For Ni content less than about 11%, selection of proper lubricant is necessary to obtain low coefficient of friction in Zn-Ni coated steel sheet such as in case of cold rolled steel sheet.

Experimental Study on the Frictional Constraint of Draw Bead (드로오 비드의 마찰구속에 관한 실험적 연구)

  • 김영석;장래웅;최원집
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.658-666
    • /
    • 1992
  • In developing computer-aided design technology for optimization of stamping die design, it has been an important issue to treat the frictional constraint acting on the blank holder surface. The main goal of this work is to establish database of draw bead restraint force and clarify friction characteristic for various automotive sheet steels, which is essential in developing friction algorithm that can be used for CAD of stamping die design. Draw bead friction tester is used to evaluate the various parameters that affect the draw restraint force and the coefficient of friction for the cold rolled and the coated sheet steels such as drawing rate, lubricant type, surface property of material, etc.

A Study on the Three-Dimensional Finite Element Analysis of Forming Processes of an Automotive Panel (자동차패널 성형공정의 3차원 유한요소해석에 관한 연구)

  • 이종문;김종원;안병직;금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.75-86
    • /
    • 1996
  • Three-Dimensional finite element analysis is performed using PAM-STAMP for design evaluation of automotive back door inner panel die. Gravity process by blanks own weight, binder-wrap process, and drawing process in the forming operations are sequentially simulated with Virtual Manufacturing Method. The most valuable result in this research is that 3-D FEM analysis can be applied to the design evaluation of draw die in the die try-out, though effects of mesh size and drawbead resistance force on the numerical accuracy are much sensitive. For the intensive application to draw-die design and try-out, the experimental know-hows about the forming variables such as friction coefficient, punch velocity, drawbead force, etc are necessary.

A Study on the Mechanical Press Joining of Double Sheet Metals Using Physical Modeling (물리적 모델링법을 이용한 이중 박판의 기계적 접합 공정에 관한 연구)

  • Kwon, S.O.;Kim, B.J.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.107-112
    • /
    • 2007
  • In this study, the mechanical joining process for double sheet metals was investigated by using physical modeling method. Process parameters of mechanical joining such as friction coefficient, drawing depth, pouch radius, die radius and material thickness are preliminarily analyzed by finite element method. Referring to the finite element analysis results mechanical joining system is designed on the basis of physical similarities. From the physical modeling test, the effect of process parameters on the deformation for the mechanical joining are experimentally investigated and optimized joining shape that can provide strong joining strength is obtained.

A Study on the Surface Roughness in the A 5032 Sheet Metal Forming (A 5032 판재성형에서 발생하는 표면거칙기에 관한 연구)

  • 박서운;김진무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.546-551
    • /
    • 1997
  • In sheet metal forming, since the surface area of workpiece is apparently larger than the volume of it, the surface condition of the sheet metal is much varied. The formability of sheet metal is decided by the forming limit and the macroscopic suface defect as like fracture and wrinkle, and microscopic asponent, The factors affected in forming limit are stain herdening exponent, strain-rate scnsitivity exponent, anisotropic coefficient. The increasing of surface roughness is decresed the forming limit curve. It is known that the greater plastic deformation the more surface roughness by Kienzle, Osadaka. The purpose of this study is to investigate the influences of surface roughness in a uniaxial tension and the traperzoidal-shaped box drawing.

  • PDF

A Comparative Study on Effect of Finite Element in Static Analysis of Sheet Metal Forming (판재성형 정적해석에서 유한요소의 영향에 대한 비교연구)

  • 윤용석;박종진
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.17-26
    • /
    • 2000
  • A series of parametric study was performed for the investigation on the influence of analysis parameters to the solution behavior in the elastic-plastic-static analysis of several sheet metal forming processes, such as deflection by a point force under plane strain and axisymmetric conditions, plane strain bending by a punch, axisymmetric stretching by a punch, axisymmetric bulging by hydraulic pressure, and axisymmetric deep drawing by a punch. The parameters considered are kind of element, number of elements, integration scheme for elemental equation and friction coefficient. Results obtained for different selections of those parameters were compared with each other, experimental measurements and analytical solution.

  • PDF