• Title/Summary/Keyword: drainage solution

Search Result 173, Processing Time 0.028 seconds

The Evaluation of the Application of Modified Wood Powder Spacers to Liner Board Mill Trials (개질처리된 목질계 스페이서의 산업용지 생산현장 적용평가)

  • Seo, Yung Bum;Yoon, Doh-Hyun;Sung, Yong Joo;Gwon, Wan-Oh;Kim, Jin-doo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.98-103
    • /
    • 2015
  • The reduction of the energy consumption in papermaking process become more important issue because of the regulation of green house gas (GHG) emission. Since more than half of energy for papermaking process is consumed during drying process, the increase of the drying efficiency would be very important solution for saving energy and reduction of GHG emission. The improvement of drying efficiency could be very difficult for the liner board mill because the liner board are usually made of recycled paper, OCC (old corrugated container). The short fiber and fines originated the OCC lead to compact sheet structure and delay the water flow out during wet pressing process and drying process. The application of lignocellulose spacer could provide more loose wet sheet structure and result in the higher drainage rate and the improved drying efficiency. In this study, the effects of the application of lignocellulose spacer to the liner board mill were evaluated based on the mill trial. In order to overcome the common disadvantage of the spacer, the loss of strength properties, the spacer was pretreated with amphoteric polyelectrolyte during mill trial. The results showed the application of pretreated spacer improved the drying efficiency by reducing steam consumption. And the loss in the strength properties by the spacer could be supplemented by the pretreatment.

Synthesis of modified polyacrylamides and their applications for the retention system of papermaking (변성 폴리아크릴 아미드의 합성 및 제지공정의 보류시스템에 응용)

  • Son, Dong-Jin;Yoon, Ji-Hyun;Choi, Eun-Jeong;Kim, Bong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2009.04a
    • /
    • pp.23-28
    • /
    • 2009
  • The purpose of this study was to improve not only wet-end performances but also paper characteristics by the modification of various factors like molecular design and ionic characteristics of polyacrylamides First of all physical characteristics were observed after modify molecular design of the cationic polyacrylamides to linear, branched and cross-linked. In addition it was found analysis method to confirm branch degree of cationic polyacrylamides to combine ionic titration characteristics and spectroscopic behavior, After application of these structure modified polyacrylamides to the multiple retention systems with inorganic microparticles, it was found adjusting of branch degree of polyacrylamides was very important to optimize wet-end improvement. Second, After polymerization of amphoteric polyacrylamide to have both of cationic and anionic functional group in the polymer, we observed not only physical characteristics but also wet-end improvement to apply recycled pulp and found that the improvement of solution stability to prevent hydrolysis and increase of ash retention dramatically to compare traditional cationic polyacrylamide retention aid, Finally, After polymerization of anionic polyacrylamide, we observed not only wet-end improvement but also paper characteristics to apply preflocculation of PCC and it was found the improvements of flocculation efficiency, retention, ash retention, optical properties of the paper and bursting strength to compare traditional preflocculant of cationic polyacrylamide.

  • PDF

A Case Study on Collapsed Geosynthetic Reinforced Segmental Retaining Wall (블록식 보강토옹벽의 붕괴사례 연구)

  • Kim, Byoung-Il;Yoo, Wan-Kyu;Kim, Kyeong-Mo;Lee, Bong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2006-2012
    • /
    • 2013
  • This case study deal with the investigation of various causes and analyses concerning the cases of the collapse of reinforced segmental retaining walls installed for newly constructing a peripheral road within the campus of ${\bigcirc}{\bigcirc}$ University located in Gyeonggi-do. As results of stability analyses and reviewing of design documents concerning collapsed reinforced segmental retaining walls, such a collapse appeared because of problems related to construction including poor-compacted backfill, the omission of the investigation on the bearing capacity, the length and space in the installation of reinforced materials, and drainage systems. Also, problems during diverse types of designing were confirmed involving the stability analysis of the entire slope stability to be considered during designing and failure in application of the proposed methods of FHWA or NCMA which are generally used for two-tier reinforced segmental retaining walls. In addition, based on these details of the stability assessment, the study proposed reinforcement solutions and construction methods for stabilizing reinforced segmental retaining walls to be reconstructed in the future.

Effect of Percolation Rate on Soil Chemical Properties and Rice Growth in Poorly Drained Soil (습답(濕畓)에서의 투수속도조절(透水速度調節)이 화학성분(化學成分) 및 벼생육(生育)에 미치는 영향(影響))

  • Ahn, Sang-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.3
    • /
    • pp.231-240
    • /
    • 1987
  • With a purpose to obtain basic informaton for improving poorly drained soil, a pot experiment was conducted about the effect of percolation rate on growth and yield of rice under application of wollastonite and rice straw as soil conditioner. The sandy and clayey soils were selected to compare difference in effectiveness of poor drainage. The results were summarized as follows: 1. Increasing or percolation rate increased rice yield in both sandy and clayey soils, but the effectiveness on yield increase was greater in clayey soil than in sandy. 2. Various materials of soil solution produced from the process of soil reduction were high at the early growing stage, but they were gradually decreased at the later growing stage. 3. With increasing percolation rate, the contents of N, $P_2O_5$ and $K_2O$ in rice plant were decreased, but that of $SiO_2$ was increased. 4. The number of roots at harvest was greater with increased extension as infiltration rate was increased.

  • PDF

Effect of Propionic Acid in the Germination of Rice Genotypes

  • Kopp, Mauricio Marini;Luz, Viviane Kopp da;Maia, Luciano Carlos da;Sousa, Rogerio Oliveira de;Oliveira, Antonio Costa de
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.249-256
    • /
    • 2008
  • The objective of this work was to evaluate the germination of 12 rice genotypes under propionic acid stress, a phytotoxic compound produced in low drainage soils with high organic matter content. The tests were conducted with the first count of germination (PCG) and germination (G) of the genotypes subjective to 0, 3, 6, and 9 mM propionic acid concentrations. The seeds of each genotype were placed in germitest paper pre-soaked in treatment solutions forming individual bags. The germination was performed at $25^{\circ}C$ and the counts were carried out at 7 (PCG) and 14 days (G). A factorial random block design was performed with four replications of 50 seeds per genotype. Our study revealed that doses up to 9 mM propionic acid in the pre-soaking solution were efficient for genetic variability studies involving the character germination in rice; genetic variability for germination was detected in the collection of rice genotypes when subjected to propionic acid toxic effects. The genotypes Guichow, Dawn, and Toride-1 showed germination stability when subjected to increasing levels of propionic acid, and genotypes originated from irrigated system-cultivation performed better when subjected to propionic acid stress. These three genotypes will be a good biological material to for enhance the resistance to phytotoxic compounds in rice.

  • PDF

Consolidation Behaviour of Dredged Clay Ground Improved by Horizontal Drain Method (수평배수공법에 의해 개량된 준설점토지반의 압밀거동에 관한 연구)

  • 김형주;원명수
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-146
    • /
    • 1997
  • In this study, a large consolidation test was carried out to estimate the consolidation behaviour of dredged clay ground improved by horizontal drain using plastic board drain with a vacuum pressure. The test results were analyzed by a numerical simulation using potential consolidation theory applied to a hollow cylinder. The rapid decreases in pore pressure and the drain speed in the plastic board indicate that the consolidation occurred quickly after the vacuum state was applied to the test soil. According to the numerical analysis obtained by applying the linear potential consolidation theory to a clay hollow cylinder with external radial drainage, the pore pressure is affected by the strain and the permeability of the soil rather than by the diffusion types. Therefore, measured surface settlement agreed with the numerical solution at the point where consolidation pressure increasing rate u: -0.5. Also the behaviour of the clay layer settlement in the place where the drain was installed was similar to that shown in Barron's consolidation theory. Finally, the design and construction procedure including the selection of the appropriate arrangement of horizontal drains were discussed based on the results of the laboratory tutsts. It is also shown that the potential consolidation theory make it possible to predict consolidation behaviour in the field using horizontal drains exactly.

  • PDF

Improvement Plan and Conditions for Operation of Fishways Installed at Sluice Gates in Domestic Dikes (국내 배수갑문에 설치된 어도의 운영실태 및 개선 방향)

  • Kim, Jae-Ok
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.44-57
    • /
    • 2011
  • The status of fishway installed in domestic dikes showed a cascade types and sluice gate types 36% (four sites) and 64% (seven sites), respectively. Fishway of cascade type was constructed four sites (Iweon, Busa, Geum river, Haenam) and only Geum river was one of them has operated much more effectively since remodeling in a fishway and fishways of the others was not operated because of several problems like a desalination, a shortage of inflow water and variation of management elevation. Fishway of sluice gate type was installed seven sites and three sites (Yeongsan, Yeongam, Geumho) one of them were continuously operated until now. This results has a interesting interpretations. Prolonged discharge of inductive water from fishway can positively affect not only ascending of fishes but also fish fauna of around of the sea. The others of a sluice gate fishway were not operated because of seawater circulation through sluice gate until now. The closed reasons of fishway in domestic dikes may be summarized as follows: impassibility of sluice gate open by shortage of inflow water, problem of proper operating by long distance of between fishway and management office, absence of operating manual, seawater circulation, lack of fishway operating awareness. It was takes a long time for solution of hardware part but software part can be to find the answer through making a fishway operation manual and development of education program for manager. In this paper we deal with fishway in domestic dikes. Proper fishway control by manager was essential for ascending of migration fishes especially at fishway installed in dikes. Thus it was necessary to make manual for fishway operation and effort of continuously maintenance.

  • PDF

Effects of Industrial By-products on Reducing Heavy Metal Leaching in Contaminated Paddy Soil

  • Oh, Se Jin;Oh, Seung Min;Kim, Sung Chul;Ok, Yong Sik;Ko, Tae Yol;Ji, Won Hyun;Yang, Jae E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.64-71
    • /
    • 2015
  • Soil contamination with arsenic and heavy metals is a worldwide problem. Main objective of this research was to evaluated effects of reducing heavy metal leaching under reduced soil condition amended with industrial by-products. The contaminated soil was amended with 3% (w/w) of limestone (Ls), steel slag (SS) and acid mine drainage sludge (AMDS). Synthetic acid rain ($H_2SO_4:HNO_3=6:4$, pH 5.5 fixed) was used for feeding solution with flow rate of $0.78{\sim}0.88mL\;min^{-1}$. Results showed that similar pH and EC of leachate was observed in all treatments regardless of applied industrial by-products. However, arsenic concentration of leachate increased when industrial by-products were mixed. Meanwhile, concentration of heavy metal in the leachate decreased from 11.3 to 4.59 mg for Cd, from 92.3 to 7.93 mg for Pb, and from 11,716 to 1,788 mg for Zn via immobilization in soil with AMDS amended, respectively. Overall, application of industrial by-products can be an environmentally-friendly way to remediate soil and(or) leachate contaminated with metal(loid)s in metal mine site.

Patient-specific surgical options for breast cancer-related lymphedema: technical tips

  • Kwon, Jin Geun;Hong, Dae Won;Suh, Hyunsuk Peter;Pak, Changsik John;Hong, Joon Pio
    • Archives of Plastic Surgery
    • /
    • v.48 no.3
    • /
    • pp.246-253
    • /
    • 2021
  • In order to provide a physiological solution for patients with breast cancer-related lymphedema (BCRL), the surgeon must understand where and how the pathology of lymphedema occurred. Based on each patient's pathology, the treatment plan should be carefully decided and individualized. At the authors' institution, the treatment plan is made individually based on each patient's symptoms and relative factors. Most early-stage patients first undergo decongestive therapy and then, depending on the efficacy of the treatment, a surgical approach is suggested. If the patient is indicated for surgery, all the points of lymphatic flow obstruction are carefully examined. Thus a BCRL patient can be considered for lymphaticovenous anastomosis (LVA), a lymph node flap, scar resection, or a combination thereof. LVA targets ectatic superficial collecting lymphatics, which are located within the deep fat layer, and preoperative mapping using ultrasonography is critical. If there is contracture on the axilla, axillary scar removal is indicated to relieve the vein pressure and allow better drainage. Furthermore, removing the scars and reconstructing the fat layer will allow a better chance for the lymphatics to regenerate. After complete removal of scar tissue, a regional fat flap or a superficial circumflex iliac artery perforator flap with lymph node transfer is performed. By deciding the surgical planning for BCRL based on each patient's pathophysiology, optimal outcomes can be achieved. Depending on each patient's pathophysiology, LVA, scar removal, vascularized lymph node transfer with a sufficient adipocutaneous flap, and simultaneous breast reconstruction should be planned.

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.