• 제목/요약/키워드: drag force

검색결과 600건 처리시간 0.023초

Approximated Generalized Torques by the Hydrodynamic Forces Acting on Legs of an Underwater Walking Robot

  • Jun, Bong-Huan;Shim, Hyung-Won;Lee, Pan-Mook
    • International Journal of Ocean System Engineering
    • /
    • 제1권4호
    • /
    • pp.222-229
    • /
    • 2011
  • In this paper, we present the concept and main mission of the Crabster, an underwater walking robot. The main focus is on the modeling of drag and lift forces on the legs of the robot, which comprise the main difference in dynamic characteristics between on-land and underwater robots. Drag and lift forces acting on the underwater link are described as a function of the relative velocity of the link with respect to the fluid using the strip theory. Using the translational velocity of the link as the rotational velocity of the joint, we describe the drag force as a function of joint variables. Generalized drag torque is successfully derived from the drag force as a function of generalized variables and its first derivative, even though the arm has a roll joint and twist angles between the joints. To verify the proposed model, we conducted drag torque simulations using a simple Selective Compliant Articulated Robot Arm.

A Transplanting Method of Laminaria japonica Areschoug (Laminariales, Phaeophyta)

  • Kim, Woong-Yong;Choi, Sung-Je;Chung, Ik-Kyo;Shin, Jong-Ahm
    • ALGAE
    • /
    • 제20권2호
    • /
    • pp.151-155
    • /
    • 2005
  • To obtain basic data, we investigated the effect of blade length on transplants, the transplanting method of Laminaria japonica for creating L. japonica resources and the number of transplanting plates with surviving L. japonica. The survival rate of L. japonica, blade length of transplants and drag force of transplanting plates were also researched. The number of transplanting plates with surviving L. japonica, the survival rate and blade length of 20 cm long-initial transplants were greater than those of 1.5, 5 and 10 cm long-initial transplants in an outdoor aquarium. At the depth of 4 m in the coastal waters, the number of transplanting plates with surviving transplants, the survival rate and the blade length of 30 cm long-initial transplants were higher than those of 10 and 20 cm longinitial transplants. The drag force is calculated by cording up sporophytes of L. japonica into the transplanting plates under water. The drag force in the case of a 2.18 kg-weight transplanting plate and in a current speed of 0.5 m${\cdot}s^{-1}$ for considering stability of the plate was 631.50 g to a concrete substratum on the seabed, 703.92 g to a shingle substratum, 788.00 g to a sand substratum, and 1018.30 g to a silt substratum. If we consider the stability and economic efficiency of the transplanting plate, the proper weight of the plate per one individual of 18.11 cm in blade width and 190.20 cm in total blade length is regarded as 508.2 g when it is calculated with the concrete substratum that shows the lowest drag force.

CMFD 코드의 난류 모델 및 비견인력 모델의 검증 계산 (VERIFICATION OF TURBULENCE AND NON-DRAG INTERFACIAL FORCE MODELS OF A COMPUTATIONAL MULTI-FLUID DYNAMICS CODE)

  • 박익규;전건호
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.99-108
    • /
    • 2013
  • The standard drag force and virtual mass force, which exert to the primary flow direction, are generally considered in two-phase analysis computational codes. In this paper, the lift force, wall lubrication force, and turbulent dispersion force including turbulence models, which are essential for a computational multi-fluid dynamics model and play an important role in motion perpendicular to the primary flow direction, were introduced and verified with conceptual problems.

유체 자가-조립을 위한 버블 항력 연구 (Drag Force on Bubbles for Fluidic Self-Assembly)

  • 임현승;이성호
    • 대한기계학회논문집B
    • /
    • 제36권1호
    • /
    • pp.47-54
    • /
    • 2012
  • 본 연구는 전통적인 픽-엔-플레이스 방법을 대체하기 위한 새로운 유체 자가-조립 방법을 개발하였다. 이 방법은 종래의 연구보다 경제적이고 효과적인 방법이다. 이를 위해, 중요한 변수인 항력, 모세관 힘, 복원력을 선정하여 이들이 칩과 기판의 부착 및 정렬에 미치는 영향을 알아보기 위해 이론값과 실험값을 비교하였다. 유체 자가-조립 실험에서는 $500{\mu}m$ 솔드 볼에서 96.5% 부착률과 미정렬 $5^{\circ}$ 인 우수한 결과를 도출하였다.

O-ring 을 이용한 원주의 저항감소에 관한 실험적 연구 (Drag Reduction of a Circular Cylinder With O-rings)

  • 임희창;이상준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2089-2094
    • /
    • 2003
  • The flow around a circular cylinder was controlled by attaching O-rings to reduce drag force acting on the cylinder. Four experimental models were tested in this study; one smooth cylinder of diameter D (D=60mm) and three cylinders fitted with O-rings of diameters d=0.0167D, 0.05D and 0.067D with pitches of PPD=1D, 0.5D and 0.25D. The drag force, mean velocity and turbulent intensity profiles in the near wake behind the cylinders were measured for Reynolds numbers based on the cylinder diameter in the range of $Re_D=7.8{\times}10^3{\sim}1.2{\times}10^5$. At $Re_D=1.2{\times}10^5$, the cylinder fitted with O-rings of d=0.0167D in a pitch interval of 0.25D shows the maximum drag reduction of about 5.4%, compared with the smooth cylinder. The drag reduction effect of O-rings of d=0.067D is not so high. For O-ring circulars, as the Reynolds number increases, the peak location of turbulence intensity shifts downstream and the peak magnitude is decreased. Flow field around the cylinders was visualized using a smoke-wire technique to see the flow structure qualitatively. The size of vortices and vortex formation region formed behind the O-ring cylinders are smaller, compared with the smooth cylinder.

  • PDF

Streamlined Shape of Endothelial Cells

  • Chung, Chan-Il;Chang, Jun-Keun;Min, Byoung-Goo;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.861-866
    • /
    • 2000
  • Flow induced shape change is important for spatial interpretation of vascular response and for understanding of mechanotransduction in a single cell. We investigated the possible shapes of endothelial cell (EC) in a mathematical model and compared these with experimental results. The linearized analytic solution from the sinusoidal wavy wall and Stokes flow was applied with the constraint of EC volume. The three dimensional structure of the human umbilical vein endothelial cell was visualized in static culture or after various durations of shear stress (20 $dyne/cm^2$ for 5, 10, 20, 40, 60, 120min). The shape ratio (width: length: height) of model agreed with that of the experimental result, which represented the drag force minimizing shape of stream-lining. EC would be streamlined in order to accommodate to the shear flow environmented by active reconstruction of cytoskeletons and membranes through a drag force the sensing mechanism.

  • PDF

An Adaptive and Robust Controller for the Undersea Robot Manipulator

  • Young-Sik kim;Park, Hyeung-Sik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권2호
    • /
    • pp.13-22
    • /
    • 2003
  • To coordinate the robot manipulator along the desired trajectory, the exact model of the dynamics is required. The added mass and added moment of inertia, buoyancy, drag force, and friction mainly affect the dynamics of the undersea robot manipulator, and they are quite complex and unknown. In this reason. the exact model of the undersea robot manipulator is difficult to obtain. In this paper, instead of having efforts to get the exact model of the robot dynamics, a control-based approach was performed. We modeled the dynamics of the undersea robot manipulator whose parameters are unknown, and then applied a proposed direct adaptive and robust control, which is different from previous studies. The unknown added mass, and added moment of inertia, drag force and friction are estimated by the direct adaptive control scheme, and the drag force which is dominant disturbance is compensated by the robust control. Also, stability of the proposed control scheme is analyzed.

수직항력식 터빈을 이용한 풍력발전 시스템의 형상 변화 및 피치각 변화에 관한 유동해석 (Numerical Analysis of Wind Turbine of Drag Force Type with change of Blade Number and Pitch Angle)

  • 박찬;박금성;박원규;윤순현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.61-64
    • /
    • 2004
  • To analyze the performance of Wind turbine of the drag force type, 3-D RANS equations were solved by the iterative time marching method on sliding multiblock grid system. The numerical flow simulations by changing blade number and pitch angle were carried out : blade number = 15, 20 circumferentially; pitch angle = $30^{\circ},\; 50^{\circ}$ radially. The torque coefficient was also calculated.

  • PDF

주름구조를 적용한 저속 유속 센서 (Air Flow Sensor with Corrugation Structure for Low Air Velocity Detection)

  • 최대근;이상훈
    • 센서학회지
    • /
    • 제20권6호
    • /
    • pp.393-399
    • /
    • 2011
  • In this paper, we designed and fabricated the novel air flow sensor using air drag force, which can be applied to the low air flow detection. To measure the low air flow, we should enlarge the air drag force and the output signal at the given air flow. The paddle structure is applied to the device, and the device is vertically located against the air flow to magnify the air drag force. We also adapt the corrugation structure to improve the output signals on the given air velocity. The device structure is made up of the silicon nitride layer and the output signal is measured with the piezoresistive layer. The output signals from the corrugated device show the better measurement sensitivity and the response time than that of flat one. The repeated measurement also shows the stabilized signals.

익형 표면의 딤플 형상변화에 따른 유동특성 연구 (A Study on the Flow Characteristics of Aircraft Wing Surface with Various Dimple Patterns)

  • 홍우;이종철;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제15권5호
    • /
    • pp.54-59
    • /
    • 2012
  • In order to have the high efficiency of aircraft wing and to improve the energy efficiency in field of eco-friendly transportation, the performance characteristics of the aircraft wing were studied with the change of lift to drag ratio through the CFD analysis. The design process was focused on generating the high lift force and low drag force as the lift to drag ratio was increased. In this paper, various dimple patterns were numerically designed to investigate the flow characteristics. Hexagon-and circle-shaped dimples, dimple distance and position were changed as the artificial conditions. The numerical analyses were conducted by using the commercial code, ANSYS CFX. Numerical results dependent on the turbulence intensity and lift to drag ratio distribution were graphically depicted for various dimple patterns.