• Title/Summary/Keyword: drag coefficients

Search Result 313, Processing Time 0.028 seconds

Experimental Studies on Various Ground Simulations for a Wind Tunnel Test of Road Vehicles (지상운송체의 풍동시험을 위한 지면재현의 연구)

  • Kwon, Hyeok-Bin;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.605-610
    • /
    • 2000
  • A series of wind tunnel test were conducted on Korean high speed train model to understand the flow physics around the vehicle related to the aerodynamic drag. For the wind tunnel test on high-speed ground vehicle, a moving ground simulation is necessary to predict the aerodynamic drag accurately. So, the models were tested in three wind tunnels with various ground simulation facility including moving belt ground plane system and tangential blowing system. The test results including measured aerodynamic drag and flow visualization showed that a tangential blowing method can be an alternative ground simulation method in short time using conventional wind tunnel.

  • PDF

Drag Reduction of Cylinder with Dimple (딤블 있는 원주의 항력 감소)

  • Ro, Ki-Deok;Park, Ji-Tae
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.502-507
    • /
    • 2000
  • Fundamental studies on the drag reduction of the circular cylinder having dimple were conducted by the measurement of the fluid force acting on the cylinder and by the flow visualization around the cylinder. The drag coefficients were changed by the shape and the space for the arrangement of the dimple. The drag of the cylinder was reduced about 50% by the proper arrangement of the dimple. The flowfield around the cylinder having dimple, which was the minimum drag, was visualized by the hydrogen bubble technique. In this case, the separation points were moved rearward and the wake region was small in comparison with the cylinder having no dimple.

  • PDF

A study on the Aerodynamic Characteristics of a Multi-Functional Spoiler (다기능 spoiler의 공력특성에 관한 연구)

  • Lee, B.J.;Sheen, D.J.;Kim, W.J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.8 no.1
    • /
    • pp.67-81
    • /
    • 2000
  • An experimental study was performed on the time lag, lift and drag characteristics of a multi functional spoiler which is a device to increase lift and drag contrary to conventional spoiler which decrease lift and increase drag. In this study, a wind tunnel investigation was made of the effect of incidence angle, slot width, and chordwise location of multi functional spoiler on the time lag, lift and drag characteristics of a wing. The results indicate that the time lag of a multi functional spoiler is influenced mainly not only by the chordwise location of a spoiler but also by the slot width between spoiler and wing upper surface. Multi functional spoiler can reduce time lag effectively by slotting the trailing edge of spoiler with slot ratio (slot width devided by the wing chord length) between 0.05 and 0.1. Also, it shows that the lift and drag coefficients of the wing with the multi functional spoiler and trailing edge flap are increased by 20% and 80%, respectively, compared to the wing with trailing edge flap only.

  • PDF

Physical Properties of Rapeseed (II) (유채 종자의 물리적 특성(II))

  • Hong, S.J.;Duc, Le Anh;Han, J.W.;Kim, H.;Kim, Y.H.;Keum, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Some physical properties of rapeseed were measured at five moisture levels of 10.03, 14.91, 20.07, 25.06 and 30.12% (w.b.), which include frictional properties (coefficient of static friction, emptying and filling angle of repose) and aerodynamic properties (terminal velocity and drag coefficient). The physical properties of rapeseed were evaluated as a function of seed moisture content. In the moisture content range, the coefficients of static friction, emptying and filling angle of repose increased linearly with increase of moisture content. The maximum values of coefficients of static friction were on the acrylic surface, varied from 0.34 to 0.43; the next is on the galvanized steel, varied from 0.30 to 0.38; and the minimum were on stainless steel surface, varied from 0.27 to 0.35. Emptying and filling angle of repose varied from 26.12 to 29.62 and 23.83 to 27.05 degrees, respectively. Terminal velocity increased linearly from 3.47 to 3.91 m/s with increase of moisture content. Drag coefficient varied from 1.84 to 1.64 as the moisture content increased. The relationship between drag coefficient and moisture content were expressed by non-linear equation.

Effects of different wind deflectors on wind loads for extra-large cooling towers

  • Ke, S.T.;Zhu, P.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.28 no.5
    • /
    • pp.299-313
    • /
    • 2019
  • In order to examine the effects of different wind deflectors on the wind load distribution characteristics of extra-large cooling towers, a comparative study of the distribution characteristics of wind pressures on the surface of three large cooling towers with typical wind deflectors and one tower without wind deflector was conducted using wind tunnel tests. These characteristics include aerodynamic parameters such as mean wind pressures, fluctuating wind pressures, peak factors, correlation coefficients, extreme wind pressures, drag coefficients and vorticity distribution. Then distribution regularities of different wind deflectors on global and local wind pressure of extra-large cooling towers was extracted, and finally the fitting formula of extreme wind pressure of the cooling towers with different wind deflectors was provided. The results showed that the large eddy simulation (LES) method used in this article could be used to accurately simulate wind loads of such extra-large cooling towers. The three typical wind deflectors could effectively reduce the average wind pressure of the negative pressure extreme regions in the central part of the tower, and were also effective in reducing the root of the variance of the fluctuating wind pressure in the upper-middle part of the windward side of the tower, with the curved air deflector showing particularly. All the different wind deflectors effectively reduced the wind pressure extremes of the middle and lower regions of the windward side of the tower and of the negative pressure extremes region, with the best effect occurring in the curved wind deflector. After the wind deflectors were installed the drag coefficient values of each layer of the middle and lower parts of the tower were significantly higher than that without wind deflector, but the effect on the drag coefficients of layers above the throat was weak. The peak factors for the windward side, the side and leeward side of the extra-large cooling towers with different wind deflectors were set as 3.29, 3.41 and 3.50, respectively.

Minimization of wind load on setback tall building using multiobjective optimization procedure

  • Bairagi, Amlan Kumar;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.157-175
    • /
    • 2022
  • This paper highlights the minimization of drag and lift coefficient of different types both side setback tall buildings by the multi-objective optimization technique. The present study employed 48 number both-side setback models for simulation purposes. This study adopted three variables to find the two objective functions. Setback height and setback distances from the top of building models are considered variables. The setback distances are considered between 10-40% and setback heights are within 6-72% from the top of the models. Another variable is wind angles, which are considered from 0° to 90° at 15° intervals according to the symmetry of the building models. Drag and lift coefficients according to the different wind angles are employed as the objective functions. Therefore 336 number population data are used for each objective function. Optimum models are compared with computational simulation and found good agreements of drag and lift coefficient. The design wind angle variation of the optimum models is considered for drag and lift study on the main square model. The drag and lift data of the square model are compared with the optimum models and found the optimized models are minimizing the 45-65% drag and 25-60% lift compared to the initial square model.

Aerodynamic coefficients of inclined and yawed circular cylinders with different surface configurations

  • Lin, Siyuan;Li, Mingshui;Liao, Haili
    • Wind and Structures
    • /
    • v.25 no.5
    • /
    • pp.475-492
    • /
    • 2017
  • Inclined and yawed circular cylinder is an essential element in the widespread range of structures. As one of the applications, cables on bridges were reported to have the possibility of suffering a kind of large amplitude vibration called dry galloping. In order to have a detailed understanding of the aerodynamics related to dry galloping, this study carried out a set of wind tunnel tests for the inclined and yawed circular cylinders. The aerodynamic coefficients of circular cylinders with three surface configurations, including smooth, dimpled pattern and helical fillet are tested using the force balance under a wide range of inclination and yaw angles in the wind tunnel. The Reynolds number ranges from $2{\times}10^5$ to $7{\times}10^5$ during the test. The influence of turbulence intensity on the drag and lift coefficients is corrected. The effects of inclination angle yaw angle and surface configurations on the aerodynamic coefficients are discussed. Adopting the existed the quasi-steady model, the nondimensional aerodynamic damping parameters for the cylinders with three kinds of surface configurations are evaluated. It is found that surface with helical fillet or dimpled pattern have the potential to suppress the dry galloping, while the latter one is more effective.

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

Characteristic calculations of flowfield around a square prism having a detached splitter plate using vortex method (와법을 이용한 분리된 분할판을 가진 정방형주의 유동장 특성계산)

  • Ro, Ki-Deok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.156-162
    • /
    • 2013
  • The characteristics of the unsteady flowfield of a square prism having a detached splitter plate at the wake side were investigated by advanced vortex method. The instantaneous and average velocity field and pressure field around a square prism without and having splitter plate were calculated by forcing the gap ratio having the maximum drag reduction rate, at Reynolds number $Re=1.0{\times}10^4$ and the width ratio H/B=1.0 of splitter to the prism width. The drag and lift coefficients on the square prism were also obtained. The calculated results agree with the measured drag coefficients and pressure distributions on the square prism. The vortices of the opposite direction at upside and down side of the splitter plate were generated by installing of the plate. And the drag on the square prism was decreased by increasing of the pressure of back face of the prism with the vortices.

Computation of Flow around Single Rectangular Cylinders with a Splitter Plate (분리판이 부착된 사각형실린더 주위의 유동계산)

  • 박외철
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.30-36
    • /
    • 1993
  • Incompressible, unsteady flow around various single rectangular cylinders of side ratios ranging from 0.005 to 2.0 immersed in uniform flow is computed by the vortex tracing me thod. Results with and without a splitter plate pttached to the rear center of the cylinder are compared. The objective of this study is to investigate predictability of the effects of the splitter plate on drag by the method. Without the splitter plate, computed drag coefficients for cylinders of large side ratios are in good agreement with measured values, but are over predicted for those of small side ratios. With the splitter plate, drag coefficient is reduced significantly due to suppression of vortex growing near the base and interaction between the separated shear layers.

  • PDF