• 제목/요약/키워드: drag

검색결과 2,279건 처리시간 0.024초

Aerodynamic interaction between static vehicles and wind barriers on railway bridges exposed to crosswinds

  • Huoyue, Xiang;Yongle, Li;Bin, Wang
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.237-247
    • /
    • 2015
  • Wind tunnel experiments are used to investigate the aerodynamic interactions between vehicles and wind barriers on a railway bridge. Wind barriers with four different heights (1.72 m, 2.05 m, 2.5 m and 2.95 m, full-scale) and three different porosities (0%, 30% and 40%) are studied to yield the aerodynamic coefficients of the vehicle and the wind barriers. The effects of the wind barriers on the aerodynamic coefficients of the vehicle are analyzed as well as the effects of the vehicle on the aerodynamic coefficients of the wind barriers. Finally, the relationship between the drag forces on the wind barriers and the aerodynamic coefficients of the vehicle are discussed. The results show that the wind barriers can significantly reduce the drag coefficients of the vehicle, but that porous wind barriers increase the lift forces on the vehicle. The windward vehicle will significantly reduce the drag coefficients of the porous wind barriers, but the windward and leeward vehicle will increase the drag coefficients of the solid wind barrier. The overturning moment coefficient is a linear function of the drag forces on the wind barriers if the full-scale height of the wind barriers $h{\leq}2.5m$ and the overturning moment coefficients $C_O{\geq}0$.

Turbulent Flow over Thin Rectangular Riblets

  • El-Samni O. A.;Yoon Hyun Sik;Chun Ho Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1801-1810
    • /
    • 2005
  • The effect of longitudinal thin rectangular riblets aligned with the flow direction on turbulent channel flow has been investigated using direct numerical simulation. The thin riblets have been modeled using the immersed boundary method (IBM) where the velocities at only one set of vertical nodes at the riblets positions are enforced to be zeros. Different spacings, ranging between 11 and 43 wall units, have been simulated aiming at getting the optimum spacing corresponding to the maximum drag reduction while keeping the height/spacing ratio at 0.5. Reynolds number based on the friction velocity ${\mu}_\tau$ and the channel half depth $\delta$ is set to 150. The flow is driven by adjusted pressure gradient so that the mass flow rate is kept constant in all the simulations. This study shows similar trend of the drag ratio to that of the experiments at the different spacings. Also, this research provides an optimum spacing of around 17 wall units leading to maximum drag reduction as experimental data. Explanation of drag increasing/decreasing mechanism is highlighted.

양력 효과를 고려한 MIRA model 후미의 저저항 다목적 최적설계 (Multi-objective Optimal Design for the Low Drag Tail Shape of the MIRA model with the Lift Effect taken into account)

  • 이주희;이경헌;김준배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.565-568
    • /
    • 2002
  • In the flow analysis around a bluffbody such as road vehicles, drag reduction has been of the primary concern mainly due to the effect on fuel economy. To reduce the drag, which is mostly due to the pressure difference caused by the flow separation, the location of the separation and eddy sizes are controlled. However, less attention has been given to the effect of the lift. The effect of lift may cause the driving stability problem of the vehicle at high speed white heavy downward effect of lift together with the vehicle weight may require more power to drive the vehicle forward. It is considered worthwhile to pursue the optimal design of the low drag tail shape of the MIRA model while taking the lift effect into account, even though it is considered as a reference. To this end, a commercial multi-objective optimization code, FRONTIER, Is used together with the CFD code, STAR-CD. It is hoped that the results will provide more insight into the flow field around the bluffbody as transportation means.

  • PDF

두 개의 분할판을 이용한 원형 단면 실린더의 유동제어 (Flow Control Around a Circular Cylinder Using Two Splitter Plates)

  • 황종연;양경수
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.127-134
    • /
    • 2004
  • Control of drag force on a circular cylinder using multiple detached splitter plates is numerically studied for laminar flow Two splitter plates with the same length as the cylinder diameter (d) are placed horizontally in the upstream of the cylinder and in the near-wake region, respectively. Their positions are described by the gap ratios (G$_1$/d, G$_2$/d), where G$_1$ represents the gap between the cylinder stagnation point and the rear edge of the upstream splitter plate, and G$_2$ represents the gap between the cylinder base point and the leading edge of the rear splitter plate. The drag varies with the two gap ratios; it has the minimum value at a certain set of gap ratios for each Reynolds number The upstream splitter plate decreases the stagnation pressure, while the rear splitter plate increases the base pressure by suppressing vortex shedding. This combined effect causes a significant drag reduction on the cylinder Particularly, the drag sharply increases past an optimum G$_2$/d; this seems to be related to a sudden change in bubble size in the wake region.

Wind-tunnel blockage effect on drag coefficient of circular cylinders

  • Anthoine, J.;Olivari, D.;Portugaels, D.
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.541-551
    • /
    • 2009
  • This paper explains how to correctly measure the drag coefficient of a circular cylinder in wind tunnels with large blockage ratios and for the sub-critical to the super-critical flow regimes. When dealing with large blockage ratios, the drag has to be corrected for wall constraints. Different formulations for correcting blockage effect are compared for each flow regime based on drag measurements of smooth circular cylinders performed in a wind tunnel for three different blockage ratios. None of the correction model known in the literature is valid for all the flow regimes. To optimize the correction and reduce the scatter of the results, different correction models should be combined depending on the flow regime. In the sub-critical regime, the best results are obtained using Allen and Vincenti's formula or Maskell's theory with ${\varepsilon}$=0.96. In the super-critical regime, one should prefer using Glauert's formula with G=0.6 or the model of Modi and El-Sherbiny. The change in the formulations appears at the flow transition with a variation of the wake pattern when passing from sub-critical to super-critical flow regimes. This parameter being not considered in the known blockage corrections, these theories are not valid for all the flow regimes.

국내 도로터널내 차량항력계수 관련 연구 (A Study on Vehicle Drag Coefficients in Domestic Road Tunnels)

  • 이창우;이경복
    • 한국터널지하공간학회 논문집
    • /
    • 제7권4호
    • /
    • pp.313-321
    • /
    • 2005
  • 터널환기력 중 중요한 비중을 차지하고 있는 교통환기력을 추정하는데 있어서 항력계수는 중요한 설계인자이다. 현재 국내 도로터널 환기시스템 설계시 적용하고 있는 항력계수는 국내 차량특성을 고려하지 않은 외국자료의 인용, 폐색율 만에 기초하며 슬립스트리밍효과를 고려하지 않고 있는 문제를 가지고 있다. 본 논문에서는 국내 터널내 교통환기력의 정확한 추정에 목표를 두고 (1) 현재 운행 중인 국내차량 특성을 고려한 전면 투영면적를 추정하고, (2) 도로서비스 수준별 차량배치상황을 CFD분석하여 슬립스트림밍 효과를 분석하여 차량 1대당 저항계수인 $K_{blockage}$와 항력계수를 분석하였다.

  • PDF

돛새치 피부는 상어 피부처럼 마찰저항을 줄일 수 있을까? (Does the Sailfish Skin Reduce the Skin Friction Like the Shark Skin?)

  • 사공웅;김철규;최상호;전우평;최해천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.101-104
    • /
    • 2008
  • The sailfish is the fastest sea animal, reaching its maximum speed of 110km/h. On its skin, a number of V-shaped protrusions pointing downstream exist. Thus, in the present study, the possibility of reducing the skin friction using its shape is investigated in a turbulent boundary layer. We perform a parametric study by varying the height and width of the protrusion, the spanwise and streamwise spacings between adjacent ones, and their overall distribution pattern, respectively. Each protrusion induces a pair of streamwsie vortices, producing low and high shear stresses at its center and side locations, respectively. These vortices also interact with those induced from adjacent protrusions. As a result, the drag is either increased or unchanged for all the cases considered. In some cases, the skin friction itself is reduced but total drag including the form drag on the protrusions is larger than that of a smooth surface. Since the shape of present protrusions is similar to that used by Sirovich and Karlsson [Nature 388, 753 (1997)] where V-shaped protrusions pointing upstream were considered, we perform another set of experiments following their study. However, we do not obtain any drag reduction even with random distribution of those V-shaped protrusion.

  • PDF

글라이딩하는 날치의 날개형상 및 성능에 관한 연구 (Investigation of the Wing Design and Performance of a Gliding Flying Fish)

  • 박형민;최해천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.97-100
    • /
    • 2008
  • Various flyers in nature have attracted great interests with a recent need for developing versatile and small-size flight vehicles. In the present study, we focus on the flying fish which has been observed to glide a long distance just above a seawater surface. Since previous studies have depended on the field observation or measurement of the physical parameters only, quantitative data of the flying fish flight has not been provided so far. Therefore, we evaluate the wing performance of the flying fish in gliding flight by directly measuring the lift, drag and pitching moment on real flying fish models (Cypselurus hiraii) in a wind tunnel. In addition, we investigate the roles of wing morphology like the enlarged pectoral and pelvic fins, and lateral dihedral angle of pectoral fins. With both the pectoral and pelvic fins spread, the lift-to-drag ratio is larger and the longitudinal static stability is enhanced than those with the pelvic fins folded. From the glide polar, we find that the wing performance of flying fish is equivalent to those of medium-size birds like the petrel, hawk and wood duck. Finally, we examine the effect of water surface underneath the flying fish and find that the water surface reduces the drag and increases the lift-to-drag ratio.

  • PDF

Ahmed body 주위의 3차원 난류유동 해석-유한차분도식의 평가- (Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Finite Differencing Schemes-)

  • 명현국;박희경;진은주
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3589-3597
    • /
    • 1996
  • The Reynolds-averaged Navier-Stokes equations with the equations of the k-.epsilon. turbulence model are solved numerically in a general curvilinear system for a three-dimensional turbulent flow around an Ahmed body. The simulation is especially aimed at the evaluation of three finite differencing schemes for the convection term, which include the upwind differencing scheme(UDS), the second order upwind differencing scheme(SOU scheme) and the QUICK scheme. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted finite differencing schemes. It is clearly demonstrated that the large difference between computation and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from both front part and vertical rear end base. The results also show that the simulation with the QUICK or SOU scheme predicts fairly well the flow field and gives more accurate drag coefficient than other finite differencing scheme.

분리된 분할판에 의한 정방형주의 항력감소 (Drag Reduction on a Square Prism Using a Detached Splitter Plate)

  • 노기덕;윤성민;최동현;김재현;심은총
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.157-157
    • /
    • 2012
  • The Characteristics of the drag reduction of a square prism having a detached splitter plate at the wake side was investigated by measuring of fluid force on the square prism and by visualization of the field using PIV. The experimental parameters were the width ratios(H/B=0.5~1.5) of splitters to the prism width and the gap ratios (G/B=0~2) between the prism and the splitter plate. The drag reduction rate was increased with H/B, and was increased and decreased with G/B. The maximum drag reduction rate was represented by 24.2% at H/B=1.5 and G/B=0.5. The two vortices were generated by the splitter plate at the wake region of the prism. The direction of the vortex was clockwise at the upside of the splitter plate and counterclockwise at the downside.

  • PDF